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a b s t r a c t

In this paper we present a self-tuning of two degrees-of-freedom control algorithm that is designed
for use on a non-linear single-input single-output system. The control algorithm is developed based on
the Takagi-Sugeno fuzzy model, and it consists of two loops: a feedforward loop and feedback loop.
The feedforward part of the controller should drive the system output to the vicinity of the reference
signal. It is developed from the inversion of the T-S fuzzy model. To achieve accurate error-free reference
tracking a feedback part of the controller is added. A time-varying error-model predictive controller is
used in the feedback loop. The error-model is obtained from the T-S fuzzy model. The T-S fuzzy model
of the system, required in the controller, is obtained with evolving fuzzy modelling, which is based on
recursive Gustafson-Kessel clustering algorithm and recursive fuzzy least squares. It employs evolving
mechanisms for adding, removing, merging and splitting the clusters.

The presented control approach was experimentally validated on a non-linear second-order SISO sys-
tem helio-crane in simulation and real environment. Several criteria functions were defined to evaluate
the reference-tracking and disturbance rejection performance of the control algorithm. The presented
control approach was compared to another fuzzy control algorithm. The experimental results confirm
the applicability of the approach.

© 2013 Published by Elsevier B.V.
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1. Introduction22

Fuzzy-set theory was proposed by Zadeh [1], and has since been23

successfully applied to a diverse range of applications, mostly in24

the fields of control and artificial intelligence. The use of fuzzy data25

instead of crisp-valued data has proved to be a convenient way of26

solving problems that are highly non-linear or are hard to solve27

with traditional approaches. The way to use fuzzy logic to derive28

a controller was first shown by Procyk and Mamdani [2], where29

fuzzy sets were used to describe inputs to the controller as well as30

output actions. The Takagi-Sugeno (T-S) fuzzy system [3] that was31

proposed later, uses only some mathematical function of the input32

variables to describe an output.33

Fuzzy model represents a convenient way to describe the system34

behaviour. Furthermore, Takagi-Sugeno fuzzy systems are thought35

of as universal approximators [4, p. 77], since every system can36

be represented to an arbitrary precision in the form of a T-S fuzzy37

model.38

To identify the T-S model the structure and the parameters39

of the local models must be identified [3]. A structure identifi-40

cation includes an estimation of the cluster centers (antecedent41

∗ Corresponding author. Tel.: +386 14768950.Q2
E-mail addresses: andrej.zdesar@fe.uni-lj.si (A. Zdešar),

dejan.dovzan@fe.uni-lj.si (D. Dovžan), igor.skrjanc@fe.uni-lj.si (I. Škrjanc).

parameters), which is usually done by fuzzy clustering. Then for 42

each cluster the sub-model’s parameters are estimated, which is 43

usually done with a least-squares method [5]. 44

The identification can be made off-line or on-line. The on-line 45

learning of the fuzzy model has made significant progress in the 46

past few decades. A range of on-line identification procedures 47

were developed. Some of them are based on fuzzy logic (eTS [6], 48

exTS [7,8], simple TS [9], +eTS [10], FLEXFIS [11], FLEXFIS+[12], eTS 49

based on switching to neighbouring models [13]), others use neu- 50

ral networks that realize the behaviour of the fuzzy model (EFuNN 51

[14,15], DENFIS [16], ANFIS [17], GANFIS [18], SOFNN [19], SAFIS 52

[20], SCFNN [21], NFCN [22], D-FNN [23], GD-FNN [24], SONFIN [25], 53

NeuroFAST [26], RAN [27], ESOM [28], Neural gas [29], ENFM [30], 54

and GAP-RBF [31]). 55

The fuzzy models that are normally used by the methods 56

are first-order Takagi-Sugeno (ANFIS, SONFIN, D-FNN, GD-FNN, 57

DENFIS, eTS, NeuroFAST, SOFNN, etc.), zero-order Takagi-Sugeno 58

(SCFNN, SAFIS, GAP-RBF, EFuNN) or generalized fuzzy model (GAN- 59

FIS). 60

The methods also differ in their ability of adapting the fuzzy 61

model and its structure. Some of the methods require an ini- 62

tial fuzzy model structure, which is then adapted. The adaptation 63

includes only the adaptation of consequent and premise param- 64

eters (adaptive methods [18,17]). Some of the methods include 65

a mechanism for adding new clusters to the model structure 66

(incremental methods [6]). Recently proposed methods also include 67
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2 A. Zdešar et al. / Applied Soft Computing xxx (2013) xxx–xxx

mechanisms for merging, removing and splitting clusters. The68

methods use different clustering algorithms, such as ECM ([16]),69

recursive subtractive clustering ([6]), Gath-Geva clustering ([30])70

and others. The local model parameters’ identification is usually71

done with some version of the least-squares algorithm. In this72

paper the evolving fuzzy model method (eFuMo) is used for the73

fuzzy-model identification. The method is based on the recur-74

sive Gustafson-Kessel clustering algorithm [32,33] and recursive75

fuzzy least squares [6]. It employs evolving mechanisms for adding,76

removing, merging and splitting the clusters. This method was also77

used in [34] for constructing the adaptive fuzzy predictive func-78

tional controller for a semi-batch reactor.79

A model of a system in an appropriate form can represent a80

valuable insight into the system internal behaviour. The control81

algorithms that take the model of a system into account implic-82

itly belong to a class of internal model control [35]. The model83

of a system can be used to make predictions about the system84

behaviour, and can though be used to determine the optimal con-85

trol actions that take the system dynamics and constraints into86

account, the approach known as predictive control [36–38]. Over87

the years many different predictive control algorithms have been88

developed: generalized predictive control (GPC) [39], model algo-89

rithmic control (MAC) [40], predictive functional control (PFC) [41],90

model-based predictive control (MPC) [42], etc. Predictive con-91

trollers were originally designed for linear systems, but the idea92

has since been extended to non-linear systems. Many different93

fuzzy-control approaches have been proposed: predictive func-94

tional control based on a fuzzy model [43,44], fuzzy model-based95

predictive control (FMBPC) [45], etc.96

Historically, the main emphasis in system-control design has97

been on the feedback loop; however, recently, the research interest98

in feedforward control has been growing [46–49]. A feedforward99

controller alone can never achieve an accurate tracking perfor-100

mance, but with the addition of a feedback extension this deficiency101

can be eliminated. The combination of feedforward and feedback102

control loops is known as two degrees-of-freedom (2 DOF) con-103

trol [35]. The feedforward part should provide a fast reaction to104

reference changes and drive the output into the vicinity of the ref-105

erence. The feedback part should eliminate the reference tracking106

errors that occur due to disturbances, drift, noise, imprecise sys-107

tem modelling, etc. The idea of 2 DOF control has, in recent years,108

received a lot of attention in the control community. The 2 DOF109

control structure was proposed for a class of integral processes110

[50], a class of MIMO non-linear systems [51], a class of hybrid111

systems [46], among others. The 2 DOF control approach was suc-112

cessfully implemented in a diverse range of applications: trajectory113

tracking [52–54], swing-up of the double pendulum on a cart [55],114

locomotion control of a hydraulically actuated hexapod robot [56],115

motion of a magnetic suspension positioning stage [57], control of116

a fire-rescue turntable ladder [58], temperature control of indus-117

trial refineries furnaces [59], temperature control in a batch reactor118

[46], etc.119

One of the goals of the paper is to present the usefulness of120

the evolving fuzzy modelling for solving the control problems. In121

this paper we present a 2 DOF fuzzy control design that is self-122

tuned based on fuzzy model of the system. This means that the123

control structure and parameters are determined implicitly based124

on the given fuzzy model of the system. Therefore, self-tuning can125

be achieved. Another goal is to achieve set-point invariant refer-126

ence tracking. In this paper we consider that both parts of the 2127

DOF controller are designed based on the (inverse) Takagi-Sugeno128

fuzzy model. The feedback part of the control algorithm is designed129

in the model predictive scheme based on the fuzzy model. The con-130

trol algorithm is developed for SISO non-linear systems. We also131

present the evolving mechanisms for adding, removing, merging132

and splitting the clusters in the evolving fuzzy model.133

The outline of the paper is as follows. Section 2 presents a fuzzy 134

model in T-S form, and Section 3 describes the method of evolving 135

fuzzy modelling. This is followed by Section 4, which presents the 2 136

DOF control scheme. Section 5 gives a description and mathemati- 137

cal modelling of a helio-crane system, the system that was used for 138

evaluation of the presented control algorithm. Section 6 presents 139

experimental results made in simulation environment and on real 140

system, and gives a comparison of the proposed control algorithm 141

to a fuzzy predictive functional controller. Afterwards, a discussion 142

on the results is given in Section 7 and finally, Section 8 concludes 143

the paper with some ideas for future development. 144

2. Fuzzy model 145

In this section the notation used to describe a fuzzy system is 146

presented. An arbitrary system can be described with a set of K 147

fuzzy rules {Rj}j=1,...,K in Takagi-Sugeno fuzzy form, where the rule 148

Rj is defined as: 149

IF y(k − n+ 1) is Ajn AND . . . AND y(k) is Aj1,

THEN y(k + 1) = fj(u(k −m+ 1), . . ., u(k), y(k − n+ 1), . . ., y(k)).
(1) 150

The antecedents of the rules (IF parts) describe the fuzzy regions 151

in the space of input variables. For the description of the input- 152

output dynamics in THEN parts of the rules (consequences) the 153

nonlinear auto regressive model with exogenous inputs (NARX) is 154

selected, but any other model could be used as well. The NARX 155

model predicts the next output based on the past inputs and out- 156

puts. Furthermore, we assume that every THEN part of each fuzzy 157

rule can be approximated with an affine NARX model: 158

fj(k) = �Tj  (k), (2) 159

where �Tj = [rj bm,j. . .b1,j an,j. . .a1,j] contains all the parameters 160

that apply to the rule Rj . In the vector T(k) = [1 u(k − m + 1) . . . u(k) 161

y(k − n + 1) . . . y(k)] the past inputs and outputs are gathered. 162

The predicted output of a fuzzy model can be given in a compact 163

matrix form as follows: 164

y(k + 1) = ˇT (k)�T (k), (3) 165

where ˇT(k) represents the normalized degrees of fulfillment for 166

the whole set of fuzzy rules {Rj}j=1,2,...,K in the current time step, 167

written in the vector formˇT(k) = [ˇ1(k)ˇ2(k) . . . ˇK(k)]. We assume 168

the normalized degrees of fulfillment, which are generally time 169

dependent, comply with Eq. (4) for every time step k. 170

K∑
j=1

ˇj(k) = 1 (4) 171

In Eq. (3) the matrix� ∈ R1+m+n × RK contains all the parameters 172

of the fuzzy model for the whole set of rules {Rj}j=1,2,...,K : � = [�1 173

�2 . . . �K]. 174

3. Evolving fuzzy model 175

The evolving fuzzy model is based on recursive Gustafson-Kessel 176

clustering. The algorithm starts with one cluster and adds clusters 177

if necessary. The first data sample is taken as an initial center of the 178

first cluster. The method considers two different regression vectors. 179

One is for clustering ( xf) (clustering data vector) and the other is 180

for local model-parameter estimation ( xk) (the regression vector). 181

The y in the following equations denotes the output of the process. 182

To cluster the input-output space the positions of the cluster 183

centers and the variance of the data around the clusters should be 184

calculated. Using the fuzzy c-means recursive algorithm this can be 185
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done using the following equations. First, the change of the center186

position is calculated as:187

�vi(k + 1) =
(�ik+1)�

(
xf (k + 1) − vi(k)

)
si(k + 1)

, (5)188

where vi(k) is the center position for the previous sample, xf(k + 1)189

is the current clustering data vector and si(k + 1) is the sum of the190

past membership degrees calculated as:191

si(k + 1) = �vsi(k) +��
ik+1. (6)192

The initial si(0) is usually set to one. With the initialization of si(0) to193

a higher value, the initial speed of adaptation slows down. The �v ∈194

[0 1] is the forgetting factor (value of one turns off forgetting and195

values lower than one increase the forgetfulness). The forgetting196

factor can be set using the rule of thumb Eq. (21). The centers are197

then moved for�vi(k + 1):198

vi(k + 1) = vi(k) +�vi(k + 1), i = 1, . . ., c. (7)199

The index i is the index of the cluster and c is the number of clus-200

ters. The membership �ik+1 of the current clustering vector xf is201

calculated as:202

�ik+1 = 1∑c
j=1

(
dik+1
djk+1

) 2
�−1

, (8)203

where dik+1 is the distance of the clustering vector to the ith cluster204

and � is the fuzziness (in most cases �= 2). The distance is defined205

as:206

d2
ik+1 =

(
xf (k + 1) − vi(k)

)T
Ai

(
xf (k + 1) − vi(k)

)
, (9)207

where Ai depends on the distance that we use. For the Euclidean208

distance Ai is the unit matrix (fuzzy c-means algorithm), and using209

the Mahanalobis distance Ai is equal to the inverse fuzzy covariance210

matrix. For the distance used with the GK clustering algorithm the211

Ai is equal to the fuzzy inverse matrix and the determinant:212

Ai = �i det (F i)
1/zF−1

i , (10)213

where �i is usually set to a value of one and z is the number of214

variables (number of elements of xf).215

The fuzzy covariance is calculated using the following equation:216

F i(k + 1) = �c si(k)
si(k + 1)

F i(k) +
��
ik+1

si(k + 1)
DFi , (11)217

DFi =
(
xf (k + 1) − vi(k + 1)

)(
xf (k + 1) − vi(k + 1)

)T
. (12)218

When using the GK clustering algorithm there is a need for a cal-219

culation of the recursive inverse fuzzy covariance matrix and the220

determinant. The equation for the inverse fuzzy variance matrix is221

the following:222

[F i(k + 1)]−1 = 1
�c

si(k + 1)
si(k)

[
[F i(k)]

−1 − B

C

]
, (13)223

B = [F i(k)]
−1DFi [F i(k)]

−1, (14)224

C = �c si(k)
��
ik+1

+ dTFi [F i(k)]
−1dFi , (15)225

dFi = xf (k + 1) − vi(k + 1). (16)226

The equation for the recursive determinant calculation is given227

as:228

det (F i(k + 1)) =
(
�c

si(k)
si(k + 1)

)z
det (F i(k)) (1 + A) , (17)229

A = 1
�c

��
ik+1

si(k)

(
dTFi [F i(k)]

−1dFi
)
, (18)230

where z is the number of elements of the clustering vector. A more 231

detailed derivation of these equations can be found in [33]. 232

Once the clusters are updated the fuzzy recursive least squares 233

are used to update the linear local models parameters. There are 234

different algorithms proposed [60,6,30,61], and these are based 235

on weighted recursive least squares. The equation for adaptation 236

based on [61] are: 237

 i(k + 1) = [1, xk(k + 1)T ]
T
,

y(k + 1) = y(k + 1),
(19) 238

P i(k + 1) = 1
�r

(
P i(k) −

ˇiP i(k) i(k + 1) T
i
(k + 1)P i(k)

�r + ˇi Ti (k + 1)P i(k) i(k + 1)

)
,

�i(k + 1) = �i(k) + P i(k)ˇi i(k + 1)
(
y(k + 1) − T

i
(k + 1)�i(k)

)
.

(20) 239

The parameters of the ith sub-models are denoted as �i, the for- 240

getting factor is denoted with �r and ˇi denotes the membership 241

degree of the current clustering vector to the ith cluster. For setting 242

the forgetting factor �r one can use the rule of thumb presented in 243

[62]: 244

� = 1 − 2
N
, (21) 245

where N is the number of samples that have an influence on estima- 246

tion. The same rule can be used for setting the forgetting factors for 247

the clustering algorithm�c and�v. It was found that setting�c equal 248

to �v gives more true approximation of fuzzy covariance matrix. For 249

ˇi the membership degrees that are calculated during the cluster 250

update can be used. However, in general they do not have a smooth 251

transition. When identifying a process with a smooth nonlinearity 252

it is better to recalculate the membership degrees using a Gaussian 253

function. For this we can use radial base functions: 254

�ij = e
−

d2
ij

2�m	2
ij , (22) 255

where dij is the distance between the jth component of the ith 256

cluster and the jth component of the clustering data vector: 257

d2
ij =

(
xfj − vij

)2
, (23) 258

	2
ij

is the jth diagonal element of the fuzzy covariance matrix and�m 259

is the overlapping factor (set between 0.25 to 1). The membership 260

degree ˇi is calculated as a product of the membership degree of 261

each component: 262

ˇi =
z∏
j=1

�ij, (24) 263

where z is the number of components of the clustering vector xf. 264

Note that these membership degrees ˇi should be normalized as in 265

Eq. (4). The settings for the parameters are given in [34] and [33]. 266

For the fine tuning of the local model parameters the concept of 267

instrumental variables can be used, as presented in [61]. 268

P i(k + 1) = 1
�r

(
P i(k) −

ˇiP i(k) mi (k + 1) T
i
(k + 1)P i(k)

�r + ˇi Ti (k + 1)P i(k) mi (k + 1)

)
,

�i(k + 1) = �i(k) + P i(k)ˇmi mi (k + 1)
(
y(k + 1) − T

i
(k + 1)�i(k)

)
,

(25) 269

where  mi (k + 1) is the regression vector, where 270

the delayed process outputs (y) are replaced by 271

the delayed model outputs (ym):  mi (k + 1) = 272

[1 u(k −m+ 1) . . . u(k) ym(k − n+ 1) . . . ym(k)]T . The ˇmi 273

are the membership degrees of the clustering vector, where the 274

delayed process outputs are replaced by the delayed model outputs 275

in the same way as with the regression vector. 276

The above equations represent the adaptation algorithm of the 277

eFuMo method. To achieve the evolving nature of the method the 278

dx.doi.org/10.1016/j.asoc.2013.10.022
Original text:
Inserted Text
)

Original text:
Inserted Text
.

Original text:
Inserted Text
21

Original text:
Inserted Text
)

Original text:
Inserted Text
,

Original text:
Inserted Text
-th

Original text:
Inserted Text
)

Original text:
Inserted Text
1

Original text:
Inserted Text
,

Original text:
Inserted Text
T

Original text:
Inserted Text
,

Original text:
Inserted Text
1

Original text:
Inserted Text
,

Original text:
Inserted Text
)

Original text:
Inserted Text
A

Original text:
Inserted Text
,

Original text:
Inserted Text
,

Original text:
Inserted Text
)

Original text:
Inserted Text
,

Original text:
Inserted Text
.

Original text:
Inserted Text
-th

Original text:
Inserted Text
-th

Original text:
Inserted Text
,

Original text:
Inserted Text
-th

Original text:
Inserted Text
-th

Original text:
Inserted Text
-th

Original text:
Inserted Text
,

Original text:
Inserted Text
-th

Original text:
Inserted Text
,

Original text:
Inserted Text
4

Original text:
Inserted Text
,

Original text:
Inserted Text
,
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mechanisms for adding, removing, splitting and merging the clus-279

ters must be included. Also, a condition is added to prevent the280

moving of clusters to which the membership degree of the current281

clustering vector is lower than a certain threshold (the beta-cut282

condition). This threshold is set somewhere between 0.1 and 0.3.283

The evolving mechanisms are briefly described in the following284

subsections.285

3.1. Adding of clusters286

The adding of clusters is usually done by some distance measure287

of the current clustering vector to existing clusters or by member-288

ship degree. If a current sample has a low membership degree a289

new cluster is added with the center in the current clustering vec-290

tor. The eFuMo adding criterion is based on the normalized distance291

of the current clustering vector to the existing clusters. In general,292

different distances can be used. In our case we used the normalized293

Euclidean distance for each component of the clustering vector. The294

normalized distance is defined as:295

dijnorm = dij

kn
√
fijj
,

dij = |xfj − vij |,
(26)296

where i is the index of the closest cluster and j is the index of the297

component. The normalization constant kn is user defined and is,298

in general, set to 2 and fijj is the jth diagonal element of ith cluster’s299

fuzzy covariance matrix. In our case the normalized distances were300

then summed together:301

Dsum =
z∑
j=1

dijnorm . (27)302

A new cluster can be added if the value of Dsum is greater than z,303

where z is the number of clustering-vector components.304

To prevent the adding of clusters based on outliers an additional305

condition [63] was introduced. For the cluster to be added at least306

N consecutive samples must satisfy the distance adding condition.307

The number N is normally set from 3 to 10, depending on the data.308

This condition lowers the possibility of adding the cluster based on309

outliers.310

3.1.1. Initialization of a new cluster311

The new cluster center is positioned at the current clustering312

vector. The fuzzy covariance matrix is initialized as a diagonal313

matrix where the distances to the closest cluster are considered.314

The diagonal elements are defined as:315

fnewjj = −
d2
ij

2 ln(
ˇ)
, (28)316

where 
ˇ is a user-defined constant that is normally set to 0.15. If317

the distance dij is smaller than the standard deviation (
√
fijj ), then318

a diagonal element is equal to the diagonal element of the closest319

cluster (fnewjj = fijj ). In the same manner an initial fuzzy covariance320

for the first cluster can be set by considering the expected number of321

clusters and data range. Next, the parameters of a new local model322

can be initialized using a weighted mean:323

�i+1j =
∑c

i=1ωij �ij∑c
i=1ωij

(29)324

where i is the index of the cluster and j is the parameter index. The 325

weightsωij can be equal to the normalized membership degrees of 326

the other clusters or combined with the variance of the parameters: 327

ωij = ˇi
1

	2
Pijj

, (30) 328

where 	2
Pijj

is the jth diagonal element of the least-squares covari- 329

ance matrix of the ith cluster. The index c defines the number of 330

cluster that satisfy the beta-cut condition. 331

3.2. Removing of clusters 332

The removing of clusters in our case is based on their sup- 333

port. Two conditions were implemented. The first one is minimal 334

existence condition. This condition is implemented to remove the 335

clusters, that were added based on outliers. In order for the cluster 336

to stay in the structure it must gather a certain amount of support 337

samples Nstrh after a certain period after its creation kdelay. The Nstrh 338

is usually set to 15 and kdelay to 5 [10]. The support Nsi is usually 339

defined as the number of samples that have the maximum member- 340

ship of a certain cluster. The second condition is based on cluster’s 341

support/age coefficient (Sn). The condition is meant to remove old 342

clusters, that are no longer valid, from the structure. The cluster is 343

removed if its support normalized with its age is lower than a frac- 344

tion of the mean support/age coefficients. The age ai is defined as 345

the number of samples from the creation ki and the current sample 346

k: 347

ai = k − ki, (31) 348

Sni = Nsi
ai
. (32) 349

Both conditions for removing can be written as: 350

IF Sni < εmeani=1,...,c(Sni ) OR
(
Nsi < Nstrh AND k > ki + kdelay

)
,

THEN remove ithcluster,
(33) 351

where Sni is the ith cluster’s support/age coefficient, 352

meani=1,...,c(Sni ) is the mean value of support/age coefficient 353

of all clusters and ε is the user defined constant lower than one 354

(usually 0.1). 355

3.3. Merging of clusters 356

The merging algorithm is meant to merge the clusters that are 357

either close or have the same local model parameters. The eFuMo 358

method considers merging based on the membership degrees of 359

clusters to each other [30] (unsupervised) and merging based on 360

the correlation method [12] (supervised). 361

In eFuMo the unsupervised merging is based on a normalized 362

Mahanalobis distance: 363

diknorm = ((vk − vi)
TF−1
i (vk − vi))

0.5

(df TinormF
−1
i df inorm )

0.5
, (34) 364

df inorm =
[√

fi11

√
fi22

. . .
√
fizz

]T
. (35) 365

The clusters are merged if the distances diknorm and dkinorm are below 366

a threshold kd and the ratio between the distances is lower than the 367

threshold kr. 368

IF diknorm < kd AND dkinorm < kd AND |1 − diknorm
dkinorm

|< kr,

THEN merge ithand kthcluster.

(36) 369

The threshold kd is defined based on the allowed maximum mem- 370

bership degree εˇ of the kth cluster to the ith cluster and vice versa: 371

kd =
√

−2 ln(εˇ). (37) 372
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The kr should be set to around 0.1 and the εˇ to around 0.85. This373

rule only merges close clusters.374

In general, the clusters can be further apart, but still have the375

same shape and the parameters of the local model. To merge376

these kinds of clusters the supervised merging algorithm is used.377

A correlation between the past membership degrees (Cbetaik ) of the378

clustering vectors is monitored, as in [12]. If the correlation is higher379

than a threshold value (usually 0.9), the clusters are considered380

for merging. This condition is combined with the condition of the381

angles between the parameters (
ik) and support for the clusters382

from the time of the last change in the structure (Nsli). This means383

that each time some of the evolving mechanisms change the num-384

ber of clusters the correlation value and the support Nsli are reset.385

The two clusters are merged if they have Nsli larger than a user386

defined threshold, the angles between the local models parameters387

are small and there are no other clusters between them. The angles388

of local models are calculated differently as in [12]. Using the angle389

condition as presented in [12] we found that in many cases clus-390

ters, that do not have similar parameters are often merged together.391

Therefore we implemented a different version of the condition. First392

the algorithm searches all local models for the absolute maximal393

value of each local model’s parameter. The parameters of the two394

local models that are considered for merging are normalized and395

the angle difference is calculated for each parameter.396

˛j = |arctan(�nkj ) − arctan(�nij)|, (38)397

where k and i are the indexes of the two clusters considered for398

merging, j is the index of the parameter and �n is the normalized399

parameter. If angle differences ˛j for all parameters are below the400

user defined threshold (usually 2 degrees), the clusters are merged401

together.402

The initialization of a new cluster position and variance is made403

as suggested in [30].404

3.4. Splitting of clusters405

The splitting of clusters is currently meant to fine tune the406

fuzzy model. It can add clusters in the input-output space where407

the output-model error is higher than a predefined threshold. The408

eFuMo method tracks the mean error for each cluster. For each409

sample, if the sample does not satisfy the distance condition for410

adding, the output error of the current model is calculated. Then411

the model error is divided among the clusters, depending on the412

membership degrees of the current clustering sample. If the error413

of one of the clusters exceeds the defined threshold, this cluster is414

split. The parameters of the model stay the same, and the centers415

of the clusters are positioned based on a fuzzy-covariance matrix.416

The new positions are calculated as:417

vi1 = vi + df inorm ,
vi2 = vi + df inorm .

(39)418

This approach to initialization is also presented in [64]. Initializa-419

tion can also be based on the eigenvectors of the fuzzy covariance420

matrix [65]. This fuzzy covariance matrix is divided by two, and421

the threshold is time decaying. The user specifies the maximum422

and minimum values and the decay constant for the threshold, the423

same as in [23]. The error is set to zero when the number of clusters424

changes.425

The eFuMo method also considers a general time delay (�) for the426

evolving mechanisms. This delay is user specified. If a change in the427

number of clusters occurs, the evolving mechanisms are stopped for428

this specified delay. The scheme of the algorithm is shown in Fig. 1.429

x k , x f , y,
sample number

Is sample number >
last change+ τ ?

Recursive clustering

Recursive fuzzy
least squares

Adding mechanism

Removing mechanism

Merging mechanism

Correlation merging

Splitting

Has number of clusters
changed?

last change =
sample number

Evolving

Adaptation
no

yes

yes

Fig. 1. Flowchart of a single step in the identification of evolving fuzzy model.

4. 2 DOF fuzzy model predictive control 430

The main goal of the presented control algorithm is to provide 431

precise error-free reference-signal tracking. The control structure 432

is designed in a way that all the system dependent parameters 433

of the control algorithm can be obtained from the fuzzy model 434

of the system. Since the fuzzy model can be obtained with the 435

identification algorithm presented in Section 3, the control algo- 436

rithm is considered to be self-tuned. The control structure uses a 437

two degree-of-freedom concept: a combination of feedforward and 438

feedback loops; and fuzzy model is used in the design of both con- 439

trol loops. An overview of the control structure in depicted in Fig. 2. 440

Once the fuzzy model of the system is identified, it can be fed to 441

the controller and the controller can be switched on. The identifi- 442

cation is made on the open-loop system, and once the controller 443

is switched on the identification is switched off, and the evolving 444

fuzzy model is frozen. 445

4.1. Feedforward control 446

To implement a feedforward reference tracking controller the 447

inverse model of the system needs to be known. The derivation of 448

an inverse model may not be an easy task and the solution may 449

not even be feasible. In this section we present a summary of an 450

Feedforward

Feedback System

Identification

Fuzzy model

r

e

uF

uB u y

−

Fig. 2. Structure of 2 DOF fuzzy model predictive control.
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approach to the inversion of a T-S fuzzy model introduced by Karer451

et al. [46].452

First, we break apart the matrix of model parameters453

�T = [�r �
T
u �u,1 �T

y ] and the regression vector  T (k) =454

[1  Tu(k) u(k)  Ty (k)] of a fuzzy model Eq. (3), where �r ∈ RK ,455

�u ∈ Rm−1 × RK , �u,1 ∈ RK ,�y ∈ Rn × RK and  u ∈ Rm−1,  y ∈ Rn.456

Notice the slight abuse of notation, since � in this section does457

not correspond to the � defined in Section 2. In the new extended458

notation the fuzzy system Eq. (3) is rewritten as:459

y(k + 1) = ˇT (k)
(
�r +�T

u u(k) + �u,1u(k) +�T
y y(k)

)
. (40)460

We assume the model Eq. (40) is capable of following the ref-461

erence signal. Then, there should exist a time-serie of feedforward462

inputs uF(k) that achieves an error-free reference signal tracking of463

the model y(k) = r(k) for all the k > 0. If we substitute in Eq. (40) all the464

outputs y for the appropriate reference values r and all the inputs u465

for the previous feedforward inputs uF, then the feedforward input466

uF(k) can be calculated:467

uF (k) =
r(k + 1) − ˇTr (k)(�r +�T

u uF (k) +�T
y r(k))

ˇTr (k)�u,1
, (41)468

where  TuF (k) = [uF (k −m+ 1) . . . uF (k − 1)] and  Tr (k) = [r(k −469

n+ 1) . . . r(k)]. We have denoted the fulfillment vector with a470

subscript r to emphasis that the vector belongs to the model of the471

reference signal. The feedforward input uF(k) does not depend on472

the system measurements, but only on the undisturbed reference473

signal and previous feedforward inputs. The fulfillment vectorˇr(k)474

is calculated based on the reference signal.475

The Eq. (41) clearly violates the causality constraint, since the476

optimum input in time-step k is dependent on the future reference477

signal at time step k + 1. This means that the feedforward control478

has an inherent delay of one sample time.479

An important role in the calculation of the feedforward input480

uF(k) is played by the shape of the reference signal r. It should be481

noted that some reference signals (too frequency rich) may push482

the solution of the system Eq. (41) outside the area of physically483

feasible solutions (e.g., an infinite input impulse). To overcome this484

problem, the reference signal must be chosen carefully. It is rec-485

ommended that some kind of filtering is considered in order to486

suppress the high frequencies in the reference signal. When select-487

ing the filter cut-off frequency we can take into account the system488

dynamics and the upper and lower signal bounds of the input signal.489

Although the fuzzy model may be stable and invertible, the490

inverse of the fuzzy model could become unstable. The happens491

when the model has non-minimum phase. As a consequence,492

the system cannot be driven to the desired state by the feedfor-493

ward controller alone. Naturally, the feedforward control cannot494

be implemented on inherently unstable systems. Therefore, in a495

case of unstable and non-minimum phase systems the feedforward496

control approach is not suitable. The feedforward approach could497

still be used on unstable systems, but the system must further be498

enclosed in a closed loop that is responsible for ensuring system sta-499

bility. Note, that the feedback controller should be able to take the500

feedforward actions into account when determining the feedback501

corrections.502

4.2. Model-based predictive feedback control503

In a 2 DOF control design, the control action is a sum of the504

feedforward and feedback signals, u(k) = uF(k) + (− uB(k)). Here, we505

make an assumption that the fulfillment vectors of the reference506

signal and system model are equalˇr(k) =ˇ(k) for all the steps k > 0.507

This means that we do the clustering either on the reference signal508

or on the system output for the calculation of the feedforward and509

feedback actions. Substituting Eq. (41) into Eq. (40) the following 510

relation can be expressed: 511

e(k + 1) = ˇT (k)
(
�T
u uB (k) + �u,1uB(k) +�T

y e(k)
)
, (42) 512

where we have introduced new variables: the predicted error 513

e(k + 1) = r(k + 1) − y(k + 1), the vector of the past feedback actions 514

 uB (k) =  uF (k) − u(k) and the vector of the past errors 515

 e(k) = r(k) − y(k). The fuzzy error-model Eq. (42) can be trans- 516

formed into a time-varying state-space form: 517

xe(k + 1) = Ae(k)xe(k) + be(k)uB(k),

e(k) = cTe (k)xe(k).
(43) 518

We can conclude that the dynamic behaviour of the feedback 519

controller depends on the dynamics of the system model. When 520

transforming the fuzzy error model into the state-space error 521

model, the selection of the state-space variables should be accord- 522

ing to the following scheme: 523

xe(k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e(k)

e(k) − e(k − 1)

e(k) − 2e(k − 1) + e(k − 2)
...

uB(k − 1)

uB(k − 1) − uB(k − 2)

uB(k − 1) − 2uB(k − 2) + uB(k − 3)

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (44) 524

where every element in xe ∈ Rn+m−1 except for the first and the 525

(n + 1)th is calculated as a difference of the previous element at two 526

consecutive past time steps. 527

To ensure the integral action of the controller, an additional 528

state-space variable v is introduced that integrates the output error 529

v(k + 1) = e(k) + v(k). Augmenting the state-space vector with the 530

new variable �T (k) = [xTe (k) v(k)], the extended system can be 531

written as: 532

�(k + 1)=
[
Ae(k) 0

cTe (k) 1

]
�(k) +

[
be(k)

0

]
uB(k)=A(k)�(k) + b(k)uB(k), 533

(45) 534

where A ∈ RN × RN , b ∈ RN , N = n + m. 535

The error model Eq. (45) is used in the development of the pre- 536

dictive feedback control. In order to obtain the optimal control 537

algorithm, we define a criterion function that penalizes the error 538

and control action on a finite prediction horizon h ∈ N: 539

J(uB) =
h∑
i=1

�
T (k + i|k)Q�(k + i|k) + Ru2

B(k + i− 1|k), (46) 540

where we have introduced �(k + i|k) =�r(k + i|k) −�(k + i|k) as the dif- 541

ference between the reference error �Tr (k + i|k) and the predicted 542

error �(k + i|k) for all the i ∈ {1, 2, . . ., h} time-steps ahead of the 543

current time-step k. In Eq. (46), the Q ∈ RN × RN and R ∈ R, and xT
544

Qx≥ 0 for every x ∈ RN , and R ≥ 0. The development of the control 545

law by minimization of the cost function Eq. (46) has previously 546

been shown in [53]. Here, we give a summary of the approach that 547

is rewritten for the SISO systems. 548

Using the model Eq. (45) we can make a prediction of the error 549

�(k + i|k) as a function of the current error �(k) and the unknown 550
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Fig. 3. Schematic model of a helio-crane.

feedback inputs uB(k + i − 1|k) for i = 1, . . ., h:551

�(k + i|k) = �i,0(k)�(k) +
i∑
j=1

�i,j(k)b(k + j − 1|k)uB(k + j − 1|k),552

(47)553

where we have defined �i,j(k) = A(k + i − 1|k) . . . A(k + j + 1|k)554

A(k + j|k). It should be noted that �i,j(k) = I for all the j ≥ i,555

where I is the unity matrix. All the predicted states can be556

gathered in an augmented vector �T (k + 1) = [�T (k + 1|k) �T (k +557

2|k) . . . �T (k + h|k)], and all the future inputs in another aug-558

mented vector uTB(k) = [uB(k|k) uB(k + 1|k) . . . uB(k + h− 1|k)].559

Now, the following extended system can be written:560

�(k + 1) = A(k)�(k) + B(k)uB(k), (48)561

where the matrix A(k) ∈ RhN × RN is defined as:562

A
T
(k) =

[
�T1,0(k) �T2,0(k) . . . �Th,0(k)

]
(49)563

and the matrix B(k) ∈ RhN × Rh is defined as:564

B(k) =

⎡
⎢⎢⎢⎢⎣
b(k|k) 0 . . . 0

�2,1(k)b(k|k) b(k + 1|k) . . . 0

...
...

. . .
...

�h,1(k)b(k|k) �h,2(k)b(k + 1|k) . . . b(k + h− 1|k)

⎤
⎥⎥⎥⎥⎦ .565

(50)566

567

The cost function Eq. (46) can be rewritten in a more compact568

form:569

J(uB) = �T (k + 1)Q�(k + 1) + uTB(k)RuB(k), (51)570

where we have introduced �(k + 1) = �r(k + 1) − �(k + 1) as571

the difference between the reference error �Tr (k + 1) = [�Tr (k +572

1|k) �Tr (k + 2|k) . . . �Tr (k + h|k)] and the predicted error �T (k + 1)573

on the prediction horizon h. The weight matrices are given as574

Q = oplushi=1Q and R = oplushi=1R, and are both required to be posi-575

tive semi-definite. The operator oplus i(·) denotes the direct matrix576

sum.577

The reference error is usually defined as an exponentially578

decreasing function in the form of a state-space model:�r(k + i|k) =579

Air�(k) for i ∈ {1, 2, . . ., h}. The model of the reference error on the580

entire prediction horizon h is then �(k + 1) = Ar(k)�(k), where a 581

new augmented matrix has been introduced: 582

A
T
r (k) =

[
ATr (k)

(
A2
r (k)

)T
. . .

(
Ahr (k)

)T ]
. (52) 583

To obtain the optimum control law, we need to find the mini- 584

mum of the objective function Eq. (51): 585

∂J(uB)
∂uB

= −2B
T
Q

(
Ar − A

)
�+ 2

(
B
T
QB + R

)
uB = 0. (53) 586

From the Eq. (53) the optimum control inputs are obtained: 587

uB,opt.(k) =
(
B
T
(k)QB(k) + R

)−1
B
T
(k)Q

(
Ar(k) − A(k)

)
�(k). (54) 588

Since the term in the last parentheses in Eq. (53) is positive semi- 589

definite, the obtained control input Eq. (54) is at the minimum of 590

the objective function Eq. (51), and therefore really the optimum 591

control input. According to the receding horizon strategy, at the 592

time step k only the uB,opt.(k|k) = [1 0 . . . 0]uB,opt.(k) is added to 593

the feedforward input signal uF(k), and, in spirit of the predictive 594

control, during the next time step the whole procedure is repeated 595

again. 596

The control algorithm can be tuned with several different 597

parameters. The weight matrix Q and scalar R determine how 598

strictly should the predicted error follow the desired reference 599

error and how energy rich input signal is allowed, respectively. The 600

controller can also be tuned by selecting the error reference model 601

Ar and the length of the prediction horizon h. These parameters 602

define the desired response dynamics and power consumption. 603

The presented control algorithm takes the system dynamics 604

into account inherently, in terms of the given fuzzy model. Since 605

the model of the system is obtained by identification of evolving 606

fuzzy model, the control approach is considered to be self-tuned. 607

The other tunable parameters presented in the paragraph above 608

determine the desired goals of the control algorithm, and are rela- 609

tively easy to tune. When the system goes through the input-output 610

space, these additional parameters do not need to be changed and 611

still the behaviour of the closed-loop system should stay the same 612

regardless of the operating point. This means that even when we are 613

dealing with non-linear systems, the closed-loop response should 614

be invariant to the operating point, provided a good enough model 615

of the plant is available. 616

The stability study of fuzzy systems is a difficult task. Even if 617

the fuzzy model has locally asymptotically stable subsystems, the 618

system can be still globally unstable [66]. The presented control 619

algorithm can achieve stable closed-loop response only on a certain 620
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class of non-linear SISO systems. The approach was designed to be621

used on non-linear SISO systems with simple dynamics. The sys-622

tem can be inherently unstable, but it must not have non-minimum623

phase, or else some additional measures must be taken to achieve624

stable behaviour. In a case of non-minimum phase system, the625

fuzzy model of the system used in the feedforward loop must be626

converted to appropriate minimum-phase system, otherwise the627

closed-loop system becomes unstable. This is only a necessary con-628

dition for closed loop stability and appropriate system behaviour.629

Although, the stability of the closed loop could be checked with the630

method of linear matrix inequalities (LMI) as in [67], this is not a631

simple task, since a complex set of equations has to solved. Fur-632

thermore, if the set of conditions for stability cannot be solved, the633

system could still be stable, since the approach of LMI only gives634

sufficient conditions for stability.635

5. Helio-crane636

The system that was chosen for the evaluation of the fuzzy-637

control algorithm is composed of a rigid metal rod on a pivot that638

can swing in a single vertical plane like a pendulum (Fig. 3). The639

swing of one end of the rod is physically restricted to a vertical640

half-plane, so the ends of the rod can freely move up and down. At641

the end of one end of the swinging rod a motor with a lightweight642

plastic propeller is placed perpendicular to the rod, so the rod can643

be raised or lowered by changing the propeller’s thrust Fm. When644

the motor is not turned on, the end of the rod with the motor is645

at the bottom position. The motor can only rotate in one direction,646

so the thrust always points in the same direction with respect to647

the motor. However, applying some thrust to the motor can only648

raise the rod, and the rod is lowered passively by gravitational force.649

To the main rod some additional weights are attached that influ-650

ence the behaviour of the system. The interaction with the system651

is made through an additional electronic circuit. The speed of the652

motor (system input) is voltage controlled in the range from 0 V to653

10 V. The inclination of the rod (system output) is measured with654

a resistive sensor for measuring the angle that returns the voltage,655

also in range from 0 V to 10 V. Since the system is composed of a656

motor with a propeller, like the one in a helicopter, mounted on a657

swinging rod, which can lift a weight like a crane, the system name658

was coined helio-crane.659

The system can be mathematically modelled by writing down660

the basic physics equation for rotating objects:661

Jϕ̈ = T(ϕ) − f ϕ̇, (55)662

where ϕ is the inclination of the rod, T is the sum of all torques663

on the system, J is the moment of inertia and f is the damping fac-664

tor. The moment of inertia J can be determined from the physical665

dimensions of the helio-crane, applying some basic knowledge for666

the calculation of the partial moments of inertia. According to Fig. 3,667

the moment of inertia J is:668

J = �d(
1
3
l1(r21 − r1r2 + r22) + l2(

l22
3

+ r22)) +mml2m +mu1l
2
u1 +mu2l

2
u2669

(56)670

and the torque T is:671

T = Fmlm +g sin(ϕ)(�d(
r22
2

− r21
2

) +mu1lu1 −mmlm)+

+�dl2dg sin(ϕ + 1) +mu2glu2 sin(ϕ + 2),

(57)672

where l2d = l2
√

l2
2
4 + r22 , tan 1 = l2

2r2
and tan 2 = l2+�l2

r2
. The vari-673

ables r1, r2, l1, l2, �l2, lu1, lu2, lm represent the lengths as denoted674

in Fig. 3; mm, mu1 and mu2 are the masses of the motor and the675

two weights, respectively; g is the gravitational acceleration; and676

Table 1
Helio-crane (a) model parameters (see Fig. 3), (b) input and (c) output characteristic
function data.

Symbol Value Units

g 9.81 m s−2

�d 1.13 kg m−1

mm 0.13 kg
mu1 0.145 kg
mu2 0.02 kg
r1 0.34 m
r2 0.2 m
lu1 0.165 m
lu2 0.2402 m
lm 0.38 m
l1 0.54 m
l2 0.128 m
�l2 0.0051 m
l2d 0.0269 m2

 1 0.3097 rad
 2 0.5872 rad
f 0.15 kg m2 s−1

J 0.0483 kg m2

u [V] fu [N]

0.0 0.0000
4.6 0.0000
4.7 0.1558
5.0 0.2727
5.5 0.4286
6.0 0.5844
7.0 0.8182
7.5 0.9351
8.0 1.0130
8.5 1.0909

10.0 1.0909

ϕ fy [V]

14◦ 6.00
90◦ 3.52

177◦ 0.83

�d is the linear mass density of the rods. The damping factor f can 677

be heuristically determined and is defined in Table 1(a), where all 678

the other model parameters are also gathered. The output char- 679

acteristic function y = fy(ϕ) is approximately linear (Table 1(c)), 680

but the input characteristic function Fm = fu(u) is highly non-linear 681

(Table 1(b)). We can conclude that the helio-crane is a SISO non- 682

linear system with second-order dynamics, as Eq. (55) suggests. 683

The model describing the system, Eq. (55), can be linearised 684

around some operating point (OP). We would like to obtain a linear 685

mapping for different operating points between the input actuator 686

voltage u and the output sensor voltage y. The system Eq. (55) can 687

be rewritten into a non-linear state-space form 688

ẋ(t) = F(x(t), u(t)), y(t) = H(x(t), u(t)), (58) 689

where x = [x1 x2]T denotes the internal states, which we choose to 690

be x1 =ϕ and x2 = ϕ̇. The linearised state-space model is obtained 691

by Taylor expansion of Eq. (58), where all the terms higher than the 692

first order are omitted: 693

�ẋ(t) =

⎡
⎣ 0 1

b1

J
cos(x1)− b2

J
sin(x1) − f

J

⎤
⎦

∣∣∣∣∣∣
OP

�x(t) +

⎡
⎣ 0

lm
J

∂fu
∂u

⎤
⎦

∣∣∣∣∣∣
OP

�u(t),

�y(t) =
[
∂fy
∂x1

0

]∣∣∣
OP

�x(t),

(59) 694

where we have introduced two new variables b1 = 695

g(�d(
r2
2
−r2

1
2 + l2d cos( 1)) +mu1lu1 −mmlm +mu2lu2 cos( 2)) and 696

b2 = g(�dl2d sin( 1) + gmu2lu2 sin( 2)). 697
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Fig. 4. Simulation. Distribution of the clusters over the system output.

Note that our approach does not require mathematical mod-698

elling of the system, since the model required for the controller is699

obtained by identification of the evolving fuzzy model. The derived700

analytical model will be used for validation of the presented iden-701

tification algorithm.702

6. Experimental results703

The presented self-tuning of the 2 DOF fuzzy model predic-704

tive control (2 DOF FMPC) algorithm was experimentally tested705

on the helio-crane system introduced in Section 5. In this section,706

we first present the validation of the fuzzy model obtained with707

evolving fuzzy modelling. Next, we evaluate the performance of708

the presented control algorithm and show the comparison of the709

algorithm against another advanced control approach. At the end,710

experimental results obtained from the real system are presented.711

6.1. Simulation712

First, we validated the identification of the evolving fuzzy model713

with simulation of the model Eq. (55). For the identification of the714

evolving fuzzy model a second-order NARX model was chosen: n = 2715

and m = 1. We selected the clustering variable to be the output of the716

system y (helio-crane inclination). The parameters for the identifi-717

cation were set to the recommended values presented in Section 3.718

We drove the helio-crane in open-loop up and down through all719

the achievable inclinations of the rod. The measured signals were720

used in the on-line identification of the system. After some time,721

when the number of clusters in the evolving fuzzy model settled (at722

eleven clusters), the fuzzy model was frozen. The final distribution723

of the clusters over the output space is shown in Fig. 4. To evalu-724

ate the performance of the identification, a comparison between725

Bode diagrams at all the operating points of the identified fuzzy726

model and the linearised model Eq. (59) of the helio-crane was727

made (Fig. 5).728

Once the model of the system was obtained, the controller could729

be switched on. We selected the reference to be a stairs-line signal730

with the length of each step equal to 10 s and the height of each731

step equal to 0.5 V, from 5 V to 1.5 V and back to 5 V. In this way the732

helio-crane goes through the whole range of possible inclinations.733

Note that due to the negative characteristic of the sensor output,734

a lower sensor voltage means a higher helio-crane inclination (see735

Table 1(c)).736

The controller parameters were set to the following values: the737

prediction horizon h = 5, the reference error-model matrix Ar = 0.65738

I, the states weight Q = diag([10 1 1]T) and the input weight R = 0.1,739

where I is an identity matrix and diag(·) is a diagonal matrix. The740

simulation results of the reference tracking are presented in Fig. 6.741

During the simulation time the degree of fulfillment of each cluster742

changed with time as it is shown in Fig. 7.743

The performance of the presented control approach was com-744

pared to a fuzzy predictive functional control (FPFC). A short745

Fig. 5. Simulation. Comparison between the Bode diagrams of the system (coloured)
and the identified fuzzy model (white) for different operating points.

summary of the FPFC for a second-order system is given below. The 746

model of a second-order system Gm(z) = bm
(z−am1)(z−am2) is rewrit- 747

ten into a parallel form Gm(z) = Gm1(z) + Gm2(z), where prediction of 748

each of the model for the future time k + h, h ∈ N is as follows: 749

ym1(k + h) = ahm1ym1(k) + km1(1 − ahm1)
1 − am1

u(k), (60) 750

ym2(k + h) = ahm2ym2(k) + km2(1 − ahm2)
1 − am2

u(k), (61) 751

where km1 = bm
am1−am2

and km2 = −bm
am1−am2

. The predicted output 752

of the model is a sum of both predicted submodel outputs: 753

ym(k + h) = ym1(k + h) + ym2(k + h). The fuzzy predictive functional 754

control is given as: 755

u(k) = 1 − ahr e(k) + ym1(k)(1 − ahm1) + ym2(k)(1 − ahm2)
km1(1−ah

m1
)

1−am1
+ km2(1−ah

m2
)

1−am2

− rm
bm
, (62) 756

where e(k) = w(k) − y(k) − ym(k) + ymd(k) and ar is the parameter 757

of the reference signal: 758

yr(k + h) = ahr yr(k) + (1 − ahr )w(k), (63) 759

wherew(k) is the reference signal. The ymd(k) is the delayed output 760

of the model. The parameters of the model am1, am2, bm and rm are 761
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10 A. Zdešar et al. / Applied Soft Computing xxx (2013) xxx–xxx

20 40 60 80 100 120 140
2

3

4

5

6

7

8

9

10

t [s]

u 
[V

]

20 40 60 80 100 120 140
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

t [s]

y 
[V

]

Reference
Output

a

b

Fig. 6. Simulation of 2 DOF FMPC: (a) reference signal tracking and (b) control action.

obtained from the fuzzy model Eq. (1). For more information on762

the derivation of the control law the reader is referred to the works763

[68,69,34].764

The design parameters of the fuzzy predictive functional con-765

trol were selected to be ar = 0.7 and h = 5. The reference tracking766

performance of the FPFC controller is shown in Fig. 8 and can be767

compared to the reference tracking of the proposed 2 DOF fuzzy768

control shown in Fig. 6. For better comparison of the results, the769

error is plotted in all the consecutive 10 s time windows into the770

same (relative) time frame (Fig. 9).771

To evaluate the performance of the control algorithm several772

criteria functions were defined [70]. Besides the error function773

e(k) = r(k) − y(k), we used two more integral (cumulative sum) crite-774

ria functions: the Sum of the Absolute Error775

SAE = Ts
∑
k

|e(k)|, (64)776

and the Sum of the Squared Error777

SSE = Ts
∑
k

e2(k). (65)778
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Fig. 7. Simulation. Time progress of the degrees of fulfillment for all the clusters.
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Fig. 8. Simulation of FPFC: (a) reference signal tracking and (b) control action.

To evaluate the control effort we have taken a closer look at the 779

change of the input action �u(k) = u(k) − u(k − 1) and introduced 780

two more integral criteria functions: the Sum of the Absolute Input 781

differences 782

SAdU =
∑
k

|�u(k)| (66) 783

and the Sum of the Squared Input differences 784

SSdU =
∑
k

�u2(k). (67) 785

The results were also compared by means of the settling time ts,	 (a 786

minimum time range after which the output stays within a prede- 787

fined error region	 around the reference signal) and the maximum 788

overshoot OS. If there were similar step reference changes at dif- 789

ferent operating points, the maximum settling time and overshoot 790

from among all the responses at different operating points was 791

selected as the criteria for the comparison, denoted as max ts,	 and 792

max OS, respectively. In Table 2 the comparison of the reference 793

tracking quality between the FPFC and 2 DOF FMPC in terms of 794

different criteria is shown. 795

We also evaluated the input disturbance rejection performance 796

of the presented controller and FPFC controller at three different 797

operating points: 5 V, 3.5 V and 2 V. The results are shown in Fig. 10 798

Table 2
Simulation. Comparison of reference-tracking performance to different criteria.

Criterion Units 2 DOF FMPC FPFC

SAE V s 3.1360 4.0305
SSE V2 s 0.8798 1.2032
SAdU V 86 93
SSdU V2 137 123
max ts,0.025V s 1.50 2.80
max ts,0.05V s 1.20 2.20
max OS V 0.0060 0.0932
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Fig. 9. Simulation. Error signals around all the reference steps plotted in the same time frame for (a) FPFC and (b) 2 DOF FMPC.

, and in Table 3 the performance of the disturbance rejection is799

evaluated in terms of several criteria.800

6.2. Real system801

We tested the tracking of the same reference signal as in the802

simulation environment also on the real system. We used only the803

presented control algorithm. The results from the real system are804

shown in figures from Fig. 11 to Fig. 15. Fig. 11 shows the distri-805

bution of the clusters over the output space, Fig. 12 shows Bode806

diagrams of the identified fuzzy model, in Fig. 13 and Fig. 14 the807

results of the reference tracking are shown, and in Fig. 15 the808

switching between the clusters during the reference tracking is809

visualized. The performance of the control algorithm on the real810

system in terms of different criteria is shown in Table 4.811

Table 3
Simulation. Comparison of input disturbance rejection to different criteria.

Criterion Units 2 DOF FMPC FPFC

SAE V s 0.1858 0.3541
SSE V2 s 0.0112 0.0293
SAdU V 9.48 12.56
SSdU V2 5.38 5.12
max ts,0.005V s 1.60 4.00
max ts,0.01V s 1.30 3.20
max OS V 0.1034 0.1497

7. Discussion 812

The fuzzy model of the system, required in the control algorithm, 813

was obtained with evolving fuzzy modelling. The comparison of 814

Bode diagrams of the identified fuzzy model and linearised ana- 815

lytical model in Fig. 5 confirms that the presented identification 816

method is capable of modelling the system behaviour for the whole 817

range of operating points. 818

The proposed control law was designed based on the obtained 819

fuzzy model of the system. The reference tracking results in Fig. 9(b) 820

reveal that the closed-loop step response of the proposed approach 821

is invariant to the operating point (inclination of the helio-crane), 822

which was one of the control goals. This means, that the controller 823

is capable of determining appropriate control signals even though 824

the system dynamic behaviour is non-linear. The presented control 825

law takes non-linearity of the system into account implicitly (in 826

Table 4
Real system. Performance of reference-tracking to different criteria.

Criterion Units 2 DOF FMPC

SAE V s 6.2333
SSE V2 s 1.2018
SAdU V 315
SSdU V2 403
max ts,0.05V s 5.50
max ts,0.1V s 1.60
max OS V 0.0654
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Fig. 11. Real experiment. Distribution of the clusters over the system output.

form of a fuzzy model) and adapts the control action accordingly.827

The comparison of the presented control law with the fuzzy pre-828

dictive functional control (Fig. 8) reveals, that the proposed control829

law gives a better performance in terms of almost all considered830

criteria (Table 2). The output in the case of the FPFC is a little oscil-831

latory and has little longer settling time (Fig. 9(a)) than in the case832

of 2 DOF fuzzy model predictive control, where the output error833

is also monotonically decreasing (Fig. 9(b)). The proposed control834

algorithm also give satisfactory results when dealing with input835

input disturbance rejection (Fig. 10 and Table 3). This comparison836

confirms the applicability of the proposed approach.837

Since the presented control algorithm is self-tuned based 838

on the evolving fuzzy model, the mathematical modelling of 839

the system is not necessary. This simplified the implemen- 840

tation of the control algorithm not only in the simulation 841

environment but also on the real system. The main con- 842

trol goals were also achieved on the real system (Fig. 11 to 843

Fig. 15). However, the reference tracking (Fig. 14) is not so 844

precise as in simulation environment. The reason for that is 845

mainly due to some stiction in the bearing at the pivot point. 846

Nevertheless, the obtained results on the real system are satisfac- 847

tory. 848

Fig. 12. Real experiment. Bode diagrams of the identified fuzzy model for different operating points.
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Fig. 13. Real experiment: (a) reference signal tracking and (b) control action.
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8. Conclusion 849

In this paper a self-tuning of 2 DOF control based on evolving 850

fuzzy model was presented. We showed the way fuzzy model can 851

be used in the design of the feed-forward and feedback loop of the 852

2 DOF control algorithm. To achieve self-tuning of the control algo- 853

rithm, we presented the identification algorithm of evolving fuzzy 854

model which employs mechanisms for adding, merging, splitting 855

and removing of clusters. The results obtained in the simulation 856

environment and real experiments confirm the applicability of 857

the approach. With the presented 2 DOF structure of the con- 858

trol algorithm we were able to achieve good reference tracking 859

that reacts fast to changes in the reference signal and it is able to 860

eliminate the reference-tracking error, even in the presence of dis- 861

turbances. We showed that the presented control algorithm can 862
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achieve set-point invariant reference tracking on a non-linear SISO863

system.864

The experimental results have proved the applicability of the865

presented approach and give solid ground for future enhance-866

ments of the presented control algorithm. The control algorithm867

was developed for a class of SISO non-linear systems, but in the868

future the approach might be extended to some other classes of869

systems, e.g. to at least some classes of MIMO systems.870
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