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ABSTRACT

In this paper we present a self-tuning of two degrees-of-freedom control algorithm that is designed
for use on a non-linear single-input single-output system. The control algorithm is developed based on
the Takagi-Sugeno fuzzy model, and it consists of two loops: a feedforward loop and feedback loop.
The feedforward part of the controller should drive the system output to the vicinity of the reference
signal. It is developed from the inversion of the T-S fuzzy model. To achieve accurate error-free reference
tracking a feedback part of the controller is added. A time-varying error-model predictive controller is
used in the feedback loop. The error-model is obtained from the T-S fuzzy model. The T-S fuzzy model
of the system, required in the controller, is obtained with evolving fuzzy modelling, which is based on
recursive Gustafson-Kessel clustering algorithm and recursive fuzzy least squares. It employs evolving
mechanisms for adding, removing, merging and splitting the clusters.

The presented control approach was experimentally validated on a non-linear second-order SISO sys-
tem helio-crane in simulation and real environment. Several criteria functions were defined to evaluate
the reference-tracking and disturbance rejection performance of the control algorithm. The presented
control approach was compared to another fuzzy control algorithm. The experimental results confirm

the applicability of the approach.

© 2013 Published by Elsevier B.V.

1. Introduction

Fuzzy-set theory was proposed by Zadeh [ 1], and has since been
successfully applied to a diverse range of applications, mostly in
the fields of control and artificial intelligence. The use of fuzzy data
instead of crisp-valued data has proved to be a convenient way of
solving problems that are highly non-linear or are hard to solve
with traditional approaches. The way to use fuzzy logic to derive
a controller was first shown by Procyk and Mamdani [2], where
fuzzy sets were used to describe inputs to the controller as well as
output actions. The Takagi-Sugeno (T-S) fuzzy system [3] that was
proposed later, uses only some mathematical function of the input
variables to describe an output.

Fuzzy model represents a convenient way to describe the system
behaviour. Furthermore, Takagi-Sugeno fuzzy systems are thought
of as universal approximators [4, p. 77], since every system can
be represented to an arbitrary precision in the form of a T-S fuzzy
model.

To identify the T-S model the structure and the parameters
of the local models must be identified [3]. A structure identifi-
cation includes an estimation of the cluster centers (antecedent

* Corresponding author.gel.: +386 14768950.
E-mail addresses: andrej.zdesar@fe.uni-lj.si (A. ZdeSar),
dejan.dovzan@fe.uni-lj.si (D. DovZan), igor.skrjanc@fe.uni-lj.si (I. Skrjanc).

1568-4946/$ - see front matter © 2013 Published by Elsevier B.V.
http://dx.doi.org/10.1016/j.as0c.2013.10.022

parameters), which is usually done by fuzzy clustering. Then for
each cluster the sub-model’s parameters are estimated, which is
usually done with a least-squares method [5].

The identification can be made off-line or on-line. The on-line
learning of the fuzzy model has made significant progress in the
past few decades. A range of on-line identification procedures
were developed. Some of them are based on fuzzy logic (eTS [6],
exTS [7,8], simple_TS [9], +eTS [10], FLEXFIS [11], FLEXFIS+[12], eTS
based on switching to neighbouring models [13]), others use neu-
ral networks that realize the behaviour of the fuzzy model (EFUNN
[14,15], DENFIS [16], ANFIS [17], GANFIS [18], SOFNN [19], SAFIS
[20],SCFNN[21], NFCN [22], D-FNN [23], GD-FNN [24], SONFIN [25],
NeuroFAST [26], RAN [27], ESOM [28], Neural gas [29], ENFM [30],
and GAP-RBF [31]).

The fuzzy models that are normally used by the methods
are first-order Takagi-Sugeno (ANFIS, SONFIN, D-FNN, GD-FNN,
DENFIS, eTS, NeuroFAST, SOFNN, etc.), zero-order Takagi-Sugeno
(SCFNN, SAFIS, GAP-RBF, EFUNN) or generalized fuzzy model (GAN-
FIS).

The methods also differ in their ability of adapting the fuzzy
model and its structure. Some of the methods require an ini-
tial fuzzy model structure, which is then adapted. The adaptation
includes only the adaptation of consequent and premise param-
eters (adaptive methods [18,17]). Some of the methods include
a mechanism for adding new clusters to the model structure
(incremental methods | 6]). Recently proposed methods also include

(2013), http://dx.doi.org/10.1016/j.as0c.2013.10.022
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mechanisms for merging, removing and splitting clusters. The
methods use different clustering algorithms, such as ECM (| 16]),
recursive subtractive clustering ([6]), Gath-Geva clustering ([30])
and others. The local model parameters’ identification is usually
done with some version of the least-squares algorithm. In this
paper the evolving fuzzy model method (eFuMo) is used for the
fuzzy-model identification. The method is based on the recur-
sive Gustafson-Kessel clustering algorithm [32,33] and recursive
fuzzy least squares [6]. It employs evolving mechanisms for adding,
removing, merging and splitting the clusters. This method was also
used in [34] for constructing the adaptive fuzzy predictive func-
tional controller for a semi-batch reactor.

A model of a system in an appropriate form can represent a
valuable insight into the system internal behaviour. The control
algorithms that take the model of a system into account implic-
itly belong to a class of internal model control [35]. The model
of a system can be used to make predictions about the system
behaviour, and can though be used to determine the optimal con-
trol actions that take the system dynamics and constraints into
account, the approach known as predictive control [36-38]. Over
the years many different predictive control algorithms have been
developed: generalized predictive control (GPC) [39], model algo-
rithmic control (MAC) [40], predictive functional control (PFC) [41],
model-based predictive control (MPC) [42], etc. Predictive con-
trollers were originally designed for linear systems, but the idea
has since been extended to non-linear systems. Many different
fuzzy-control approaches have been proposed: predictive func-
tional control based on a fuzzy model [43,44], fuzzy model-based
predictive control (FMBPC) [45], etc.

Historically, the main emphasis in system-control design has
been on the feedback loop; however, recently, the research interest
in feedforward control has been growing [46-49]. A feedforward
controller alone can never achieve an accurate tracking perfor-
mance, but with the addition of a feedback extension this deficiency
can be eliminated. The combination of feedforward and feedback
control loops is known as two degrees-of-freedom (2 DOF) con-
trol [35]. The feedforward part should provide a fast reaction to
reference changes and drive the output into the vicinity of the ref-
erence. The feedback part should eliminate the reference tracking
errors that occur due to disturbances, drift, noise, imprecise sys-
tem modelling, etc. The idea of 2 DOF control has, in recent years,
received a lot of attention in the control community. The 2 DOF
control structure was proposed for a class of integral processes
[50], a class of MIMO non-linear systems [51], a class of hybrid
systems [46], among others. The 2 DOF control approach was suc-
cessfully implemented in a diverse range of applications: trajectory
tracking [52-54], swing-up of the double pendulum on a cart [55],
locomotion control of a hydraulically actuated hexapod robot [56],
motion of a magnetic suspension positioning stage [57], control of
a fire-rescue turntable ladder [58], temperature control of indus-
trial refineries furnaces [59], temperature control in a batch reactor
[46], etc.

One of the goals of the paper is to present the usefulness of
the evolving fuzzy modelling for solving the control problems. In
this paper we present a 2 DOF fuzzy control design that is self-
tuned based on fuzzy model of the system. This means that the
control structure and parameters are determined implicitly based
on the given fuzzy model of the system. Therefore, self-tuning can
be achieved. Another goal is to achieve set-point invariant refer-
ence tracking. In this paper we consider that both parts of the 2
DOF controller are designed based on the (inverse) Takagi-Sugeno
fuzzy model. The feedback part of the control algorithm is designed
in the model predictive scheme based on the fuzzy model. The con-
trol algorithm is developed for SISO non-linear systems. We also
present the evolving mechanisms for adding, removing, merging
and splitting the clusters in the evolving fuzzy model.

The outline of the paper is as follows. Section 2 presents a fuzzy
model in T-S form, and Section 3 describes the method of evolving
fuzzy modelling. This is followed by Section 4, which presents the 2
DOF control scheme. Section 5 gives a description and mathemati-
cal modelling of a helio-crane system, the system that was used for
evaluation of the presented control algorithm. Section 6 presents
experimental results made in simulation environment and on real
system, and gives a comparison of the proposed control algorithm
to a fuzzy predictive functional controller. Afterwards, a discussion
on the results is given in Section 7 and finally, Section 8 concludes
the paper with some ideas for future development.

2. Fuzzy model

In this section the notation used to describe a fuzzy system is
presented. An arbitrary system can be described with a set of K
fuzzy rules {R/ }j=1,....x in Takagi-Sugeno fuzzy form, where the rule
R/ is defined as:

,,,,,

IF y(k—n+1) is A, AND ... AND y(k) is A

1
THEN y(k+]):fj(u(k—m+]),...,u(k),y(k—n+]),A..,y(k))A (1
The antecedents of the rules (IF parts) describe the fuzzy regions
in the space of input variables. For the description of the input-
output dynamics in THEN parts of the rules (consequences) the
nonlinear auto regressive model with exogenous inputs (NARX) is
selected, but any other model could be used as well. The NARX
model predicts the next output based on the past inputs and out-
puts. Furthermore, we assume that every THEN part of each fuzzy
rule can be approximated with an affine NARX model:

Fitk) = 6] k), (2)

where 0} =[rj bpj...b1j ayj...a; ;] contains all the parameters
that apply to the rule ®/. In the vector ¥T(k)=[1u(k —m+1)...u(k)
y(k—n+1)...y(k)] the past inputs and outputs are gathered.

The predicted output of a fuzzy model can be given in a compact
matrix form as follows:

y(k+1) = B (k)O (k) 3)

where B7(k) represents the normalized degrees of fulfillment for
the whole set of fuzzy rules {Rf}j:m ,,,,, k in the current time step,
written in the vector form B7(k) =[81(k) B2(k). . . Bk(k)]. We assume
the normalized degrees of fulfillment, which are generally time
dependent, comply with Eq. (4) for every time step k.

K
> Btk =1 (4)
j=1

In Eq. (3) the matrix @ € R'*™+" x RK contains all the parameters
of the fuzzy model for the whole set of rules {R/};_; 5 x: @=[6;

3. Evolving fuzzy model

The evolving fuzzy model is based on recursive Gustafson-Kessel
clustering. The algorithm starts with one cluster and adds clusters
if necessary. The first data sample is taken as an initial center of the
first cluster. The method considers two different regression vectors.
One is for clustering ( X) (clustering data vector) and the other is
for local model-parameter estimation ( x;) (the regression vector).
The y in the following equations denotes the output of the process.

To cluster the input-output space the positions of the cluster
centers and the variance of the data around the clusters should be
calculated. Using the fuzzy c-means recursive algorithm this can be

(2013), http://dx.doi.org/10.1016/j.as0c.2013.10.022
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done using the following equations. First, the change of the center
position is calculated as:

ks 1) I —v(l
Avi(’€+1):(ﬂlk+]) (:J(’Iir‘l;) v,(<))A

where v;(k) is the center position for the previous sample, x{k+1)
is the current clustering data vector and s;(k+1) is the sum of the
past membership degrees calculated as:

(5)

si(k+1) = yusi(k) + 4, 1 (6)

The initial 5;(0) is usually set to one. With the initialization of 5;(0) to
a higher value, the initial speed of adaptation slows down. The y, €
[0 1]is the forgetting factor (value of one turns off forgetting and
values lower than one increase the forgetfulness). The forgetting
factor can be set using the rule of thumb Eq. (21). The centers are
then moved for Av;(k +1):

vi(k 4+ 1) = vi(k) + Avi(k + 1),

The index i is the index of the cluster and c is the number of clus-
ters. The membership i of the current clustering vector Xy is
calculated as:

i=1,...,c (7)

1 7 A (8)

y¢ dig1 | 7T
j=1\ djq

J

Hiky1 =

where dj.1 is the distance of the clustering vector to the ith cluster
and 7 is the fuzziness (in most cases 1 =2). The distance is defined
as:

dZq = (Rr(k+ 1) = vi(k)) "a; (% + 1) = (k) , (9)

where A; depends on the distance that we use. For the Euclidean
distance A; is the unit matrix (fuzzy c-means algorithm), and using
the Mahanalobis distance A; is equal to the inverse fuzzy covariance
matrix. For the distance used with the GK clustering algorithm the
A; is equal to the fuzzy inverse matrix and the determinant:

Ai:pidet(Fi)]/ZFlflA (10)

where p; is usually set to a value of one and z is the number of
variables (number of elements of x;).
The fuzzy covariance is calculated using the following equation:

n

_ silk) o Hiky1
Fi(k—l-l)_ycsi(l<+1)F,(k)+Si(k_:UDFM (11)
Dy, = (x¢(k+ 1) — vl + 1)) (% + 1) = vk + 1)), (12)

When using the GK clustering algorithm there is a need for a cal-
culation of the recursive inverse fuzzy covariance matrix and the
determinant. The equation for the inverse fuzzy variance matrix is
the following:

, 1 Usik+1) 1,01 B
(Fik )" = - 2 R - ¢ (13)
B = [Fi(k)] ' Dy [Fi(k)] ', (14)
A A (15)

ik+1

dp, =xp(k+1) —vi(k + 1), (16)

The equation for the recursive determinant calculation is given
as:
det(Fi(k+1)) = ( ﬂYdet(F-(k))(l +A) (17)

A= Uk ! :
1 i (1
= 2500 RIFGOI dr,) (18)

where z is the number of elements of the clustering vector. A more
detailed derivation of these equations can be found in [33].

Once the clusters are updated the fuzzy recursive least squares
are used to update the linear local models parameters. There are
different algorithms proposed [60,6,30,61], and these are based
on weighted recursive least squares. The equation for adaptation
based on [61] are:

Yitk+1) =12k +1)]

(19)
yk+1) =yk+1),
1 BiPi(k)yri(k + 1)) (k + 1)Pi(k)
Pik+1) = ~ (Pi(k) - o lgi‘//,-T(k"' DP(Wi(k + ])>A (20)

Bik+1) =60+ PiCOB Wik -+ 1) (yik+ 1) = ¥ (ke + DAO)) 4

The parameters of the ith sub-models are denoted as 6;, the for-
getting factor is denoted with A, and §; denotes the membership
degree of the current clustering vector to the ith cluster. For setting
the forgetting factor A, one can use the rule of thumb presented in
[62]:
2

A=1- N’ (21)
where N is the number of samples that have an influence on estima-
tion. The same rule can be used for setting the forgetting factors for
the clustering algorithm y and y,. It was found that setting y. equal
to yy gives more true approximation of fuzzy covariance matrix. For
Bi the membership degrees that are calculated during the cluster
update can be used. However, in general they do not have a smooth
transition. When identifying a process with a smooth nonlinearity
itis better to recalculate the membership degrees using a Gaussian
function. For this we can use radial base functions:

d2
ij

N 0'2
py=e ", (22)
where d;; is the distance between the jth component of the ith
cluster and the jth component of the clustering data vector:

d2 = (x; ;)" (23)

05 is the jth diagonal element of the fuzzy covariance matrix and 7,
is the overlapping factor (set between 0.25 to 1). The membership
degree f; is calculated as a product of the membership degree of
each component:

Bi=11rin (24)
j=1

where z is the number of components of the clustering vector x.

Note that these membership degrees f; should be normalized as in

Eq. (4). The settings for the parameters are given in [34] and [33].

For the fine tuning of the local model parameters the concept of

instrumental variables can be used, as presented in [61].
BiPi(k)Yrm; (k + 1)y (k + 1)P;(k)

e+ BTk DP(k) (K + 1))"

Pk+1) = xl (Pi(k)
" (25)

ik +1) = 6i(k) + Pi(k) B, Ym, (k + 1) (y(k +1)— YTk + 1)9i(1<))/\

where Y (k+1) is the regression
the delayed process outputs (y) are replaced by
the delayed model outputs Ym): Ym(k+1) =
(1 ubk—m+1) ... uk) ym(k—n+1) ... ym(k)]". The Bm;
are the membership degrees of the clustering vector, where the
delayed process outputs are replaced by the delayed model outputs
in the same way as with the regression vector.

The above equations represent the adaptation algorithm of the
eFuMo method. To achieve the evolving nature of the method the

vector, where

(2013), http://dx.doi.org/10.1016/j.as0c.2013.10.022
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mechanisms for adding, removing, splitting and merging the clus-
ters must be included. Also, a condition is added to prevent the
moving of clusters to which the membership degree of the current
clustering vector is lower than a certain threshold (the beta-cut
condition). This threshold is set somewhere between 0.1 and 0.3.
The evolving mechanisms are briefly described in the following
subsections.

3.1. Adding of clusters

The adding of clusters is usually done by some distance measure
of the current clustering vector to existing clusters or by member-
ship degree. If a current sample has a low membership degree a
new cluster is added with the center in the current clustering vec-
tor. The eFuMo adding criterion is based on the normalized distance
of the current clustering vector to the existing clusters. In general,
different distances can be used. In our case we used the normalized
Euclidean distance for each component of the clustering vector. The
normalized distance is defined as:

g =i

Unorm

J kn /1" (26)
dU = |Xf] — V,]|A

where i is the index of the closest cluster and j is the index of the
component. The normalization constant kj, is user defined and is,
in general, set to 2 andf,-ﬁ is the jth diagonal element of ith cluster’s
fuzzy covariance matrix. In our case the normalized distances were
then summed together:

z

Dsum = /zdijnurm/\ (27)

j=1

A new cluster can be added if the value of Dy, is greater than z,
where z is the number of clustering-vector components.

To prevent the adding of clusters based on outliers an additional
condition [63] was introduced. For the cluster to be added at least
N consecutive samples must satisfy the distance adding condition.
The number N is normally set from 3 to 10, depending on the data.
This condition lowers the possibility of adding the cluster based on
outliers.

3.1.1. Initialization of a new cluster

The new cluster center is positioned at the current clustering
vector. The fuzzy covariance matrix is initialized as a diagonal
matrix where the distances to the closest cluster are considered.
The diagonal elements are defined as:

d2

i
fnewﬁ = —mf\ (28)

where €g is a user-defined constant that is normally set to 0.15. If
the distance d;; is smaller than the standard deviation (\/)Tjj), then
a diagonal element is equal to the diagonal element of the closest
cluster (fnewjj = fi,-,-)- In the same manner an initial fuzzy covariance
for the first cluster can be set by considering the expected number of
clusters and data range. Next, the parameters of a new local model
can be initialized using a weighted mean:

i@y
> wy;

Oi; = (29)

where i is the index of the cluster and j is the parameter index. The
weights wj; can be equal to the normalized membership degrees of
the other clusters or combined with the variance of the parameters:

1
wj; = Bi g,x (30)

where agv is the jth diagonal element of the least-squares covari-
n

ance matrix of the ith cluster. The index c defines the number of
cluster that satisfy the beta-cut condition.

3.2. Removing of clusters

The removing of clusters in our case is based on their sup-
port. Two conditions were implemented. The first one is minimal
existence condition. This condition is implemented to remove the
clusters, that were added based on outliers. In order for the cluster
to stay in the structure it must gather a certain amount of support
samples Ns, after a certain period after its creation kgelqy. The Nsgy,
is usually set to 15 and kgejqy to 5 [10]. The support Ns; is usually
defined as the number of samples that have the maximum member-
ship of a certain cluster. The second condition is based on cluster’s
support/age coefficient (S,). The condition is meant to remove old
clusters, that are no longer valid, from the structure. The cluster is
removed if its support normalized with its age is lower than a frac-
tion of the mean support/age coefficients. The age g; is defined as
the number of samples from the creation k; and the current sample
k:

a; = k— k'/\ X31)
Ns;
Sn,- = ?iA (32)
Both conditions for removing can be written as:
IF S, <emeaniy (S,) OR (Ns,- < Nsy, AND 1<>1<i+1<de,ay) A (33)
THEN removeifhgluster,
where Sp, is the ith cluster's support/age coefficient,

meanizlwuc(sni) is the mean value of support/age coefficient
of all clusters and ¢ is the user defined constant lower than one
(usually 0.1).

3.3. Merging of clusters

The merging algorithm is meant to merge the clusters that are
either close or have the same local model parameters. The eFuMo
method considers merging based on the membership degrees of
clusters to each other [30] (unsupervised) and merging based on
the correlation method [12] (supervised).

In eFuMo the unsupervised merging is based on a normalized
Mahanalobis distance:

(v — )" F; (v = 1)
T _ 05 A
(‘y‘inormFi ! ‘y'i11urm )

F oo = [y VFom - V] s (35)

The clusters are merged if the distances dj,,,,, and dy;,,., are below
athreshold k; and the ratio between the distances is lower than the
threshold k;.

IF d

0.5

(34)

iknorm =

Qiaorm

iknorm < ka AND dyi < kg AND |1 — m' <k, (36)
THEN merge ifhand kthluster.

The threshold k, is defined based on the allowed maximum mem-

bership degree ¢4 of the kth cluster to the ith cluster and vice versa:

kd =4/ —ZIH(EIB)A (37)

(2013), http://dx.doi.org/10.1016/j.as0c.2013.10.022
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The k; should be set to around 0.1 and the ggto around 0.85. This
rule only merges close clusters.

In general, the clusters can be further apart, but still have the
same shape and the parameters of the local model. To merge
these kinds of clusters the supervised merging algorithm is used.
A correlation between the past membership degrees (Cperq,, ) of the
clustering vectors is monitored, asin[12].If the correlationis higher
than a threshold value (usually 0.9), the clusters are considered
for merging. This condition is combined with the condition of the
angles between the parameters (¢;;) and support for the clusters
from the time of the last change in the structure (Nsl;). This means
that each time some of the evolving mechanisms change the num-
ber of clusters the correlation value and the support Nsl; are reset.
The two clusters are merged if they have Nsl; larger than a user
defined threshold, the angles between the local models parameters
are small and there are no other clusters between them. The angles
of local models are calculated differently as in [ 12]. Using the angle
condition as presented in [12] we found that in many cases clus-
ters, that do not have similar parameters are often merged together.
Therefore we implemented a different version of the condition. First
the algorithm searches all local models for the absolute maximal
value of each local model’s parameter. The parameters of the two
local models that are considered for merging are normalized and
the angle difference is calculated for each parameter.

aj = |arctan(9n,q.) - arctan(@nijﬂ, (38)

where k and i are the indexes of the two clusters considered for
merging, j is the index of the parameter and 6, is the normalized
parameter. If angle differences q; for all parameters are below the
user defined threshold (usually 2 degrees), the clusters are merged
together.

The initialization of a new cluster position and variance is made
as suggested in [30].

3.4. Splitting of clusters

The splitting of clusters is currently meant to fine tune the
fuzzy model. It can add clusters in the input-output space where
the output-model error is higher than a predefined threshold. The
eFuMo method tracks the mean error for each cluster. For each
sample, if the sample does not satisfy the distance condition for
adding, the output error of the current model is calculated. Then
the model error is divided among the clusters, depending on the
membership degrees of the current clustering sample. If the error
of one of the clusters exceeds the defined threshold, this cluster is
split. The parameters of the model stay the same, and the centers
of the clusters are positioned based on a fuzzy-covariance matrix.
The new positions are calculated as:

v =vi+df 0 (39)
Vip =1V + ‘finormA

This approach to initialization is also presented in [64]. Initializa-
tion can also be based on the eigenvectors of the fuzzy covariance
matrix [65]. This fuzzy covariance matrix is divided by two, and
the threshold is time decaying. The user specifies the maximum
and minimum values and the decay constant for the threshold, the
same as in [23]. The error is set to zero when the number of clusters
changes.

The eFuMo method also considers a general time delay (7) for the
evolving mechanisms. This delay is user specified. If a change in the
number of clusters occurs, the evolving mechanisms are stopped for
this specified delay. The scheme of the algorithm is shown in Fig. 1.

Xkr Xt, Y,
sample number

|

Is sample number >
last change+ 17

}&{ Adding mechanism )
!

(Removing mechanism)

no

( Merging mechanism )

( Recursive clustering )<—
Y

Recursive fuzzy
least squares

J (

Has number of clusters
changed?
lyes

last change =
sample number

[ Correlation merging )

Splitting )

Fig. 1. Flowchart of a single step in the identification of evolving fuzzy model.

4. 2 DOF fuzzy model predictive control

The main goal of the presented control algorithm is to provide
precise error-free reference-signal tracking. The control structure
is designed in a way that all the system dependent parameters
of the control algorithm can be obtained from the fuzzy model
of the system. Since the fuzzy model can be obtained with the
identification algorithm presented in Section 3, the control algo-
rithm is considered to be self-tuned. The control structure uses a
two degree-of-freedom concept: a combination of feedforward and
feedback loops; and fuzzy model is used in the design of both con-
trol loops. An overview of the control structure in depicted in Fig. 2.
Once the fuzzy model of the system is identified, it can be fed to
the controller and the controller can be switched on. The identifi-
cation is made on the open-loop system, and once the controller
is switched on the identification is switched off, and the evolving
fuzzy model is frozen.

4.1. Feedforward control

To implement a feedforward reference tracking controller the
inverse model of the system needs to be known. The derivation of
an inverse model may not be an easy task and the solution may
not even be feasible. In this section we present a summary of an

u

Fig. 2. Structure of 2 DOF fuzzy model predictive control.

rT Feedforward
o e
\
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approach to the inversion of a T-S fuzzy model introduced by Karer
et al. [46].

First, we break apart the matrix of model parameters
o' =16, @Z 0,1 @;] and the regression vector 1/fT(k) =
(1 ¥l uk) 1/r;(k)] of a fuzzy model Eq. (3), where 6 € RX,
O, e R™ 1 xRK, 0, 1 e RK, @y e R" x RX and ¢, e R™1, ¥, € R™.,
Notice the slight abuse of notation, since # in this section does
not correspond to the # defined in Section 2. In the new extended
notation the fuzzy system Eq. (3) is rewritten as:

y(k+1) = B"(k) (0, + O, (k) + 0, qu(k) + @§¢y(k))A (40)

We assume the model Eq. (40) is capable of following the ref-
erence signal. Then, there should exist a time-serie of feedforward
inputs ug(k) that achieves an error-free reference signal tracking of
the modely(k)=r(k)for all the k > 0.If we substitute in Eq.(40) all the
outputs y for the appropriate reference values r and all the inputs u
for the previous feedforward inputs ug, then the feedforward input
up(k) can be calculated:

r(k+1) - BL(K)O; + O, (k) + O ¥,(K))
up(k) = = N
Bl (k)01

where ¥, (k) = [up(k —m+1) ... up(k—1)] and ¥; (k) = [r(k -
n+1) ... r(k)]. We have denoted the fulfillment vector with a
subscript r to emphasis that the vector belongs to the model of the
reference signal. The feedforward input ug(k) does not depend on
the system measurements, but only on the undisturbed reference
signal and previous feedforward inputs. The fulfillment vector S-(k)
is calculated based on the reference signal.

The Eq. (41) clearly violates the causality constraint, since the
optimum input in time-step k is dependent on the future reference
signal at time step k+ 1. This means that the feedforward control
has an inherent delay of one sample time.

An important role in the calculation of the feedforward input
up(k) is played by the shape of the reference signal r. It should be
noted that some reference signals (too frequency rich) may push
the solution of the system Eq. (41) outside the area of physically
feasible solutions (e.g., an infinite input impulse). To overcome this
problem, the reference signal must be chosen carefully. It is rec-
ommended that some kind of filtering is considered in order to
suppress the high frequencies in the reference signal. When select-
ing the filter cut-off frequency we can take into account the system
dynamics and the upper and lower signal bounds of the input signal.

Although the fuzzy model may be stable and invertible, the
inverse of the fuzzy model could become unstable. The happens
when the model has non-minimum phase. As a consequence,
the system cannot be driven to the desired state by the feedfor-
ward controller alone. Naturally, the feedforward control cannot
be implemented on inherently unstable systems. Therefore, in a
case of unstable and non-minimum phase systems the feedforward
control approach is not suitable. The feedforward approach could
still be used on unstable systems, but the system must further be
enclosed in aclosed loop thatis responsible for ensuring system sta-
bility. Note, that the feedback controller should be able to take the
feedforward actions into account when determining the feedback
corrections.

(41)

4.2. Model-based predictive feedback control

In a 2 DOF control design, the control action is a sum of the
feedforward and feedback signals, u(k)=ug(k)+(— ug(k)). Here, we
make an assumption that the fulfillment vectors of the reference
signal and system model are equal B,(k) = (k) for all the steps k> 0.
This means that we do the clustering either on the reference signal
or on the system output for the calculation of the feedforward and

feedback actions. Substituting Eq. (41) into Eq. (40) the following
relation can be expressed:

e(k+1)= BT (k) (@5'/’113(") + 0, qug(k) + @;we(k)) | (42)

where we have introduced new variables: the predicted error
e(k+1)=r(k+1)—y(k+1), the vector of the past feedback actions
1/fuB(k) = qu(k) —¥,(k) and the vector of the past errors
VYe(k)=Y:(k) — P¥y(k). The fuzzy error-model Eq. (42) can be trans-
formed into a time-varying state-space form:

Xe(k+1) = Ac(k)xe(k)+ be(k)up(k),

(43)
e(k) = cl(k)xe(k),

We can conclude that the dynamic behaviour of the feedback
controller depends on the dynamics of the system model. When
transforming the fuzzy error model into the state-space error
model, the selection of the state-space variables should be accord-
ing to the following scheme:

e(k)
e(k) —e(k — 1)
e(k) — 2e(k — 1) + e(k — 2)

Xe(k)= | up(k—1) . (44)
ug(k — 1) —ug(k — 2)

ug(k — 1) — 2ug(k — 2) + ug(k — 3)

where every element in x, € R"*™-1 except for the first and the
(n+1)this calculated as a difference of the previous element at two
consecutive past time steps.

To ensure the integral action of the controller, an additional
state-space variable vis introduced that integrates the output error
v(k + 1) = e(k) + v(k). Augmenting the state-space vector with the
new variable €7(k) = [xI(k) v(k)], the extended system can be
written as:

[Ae(k) 0] [be(k)]
€k +1)= €(k) + o up(k)=A(k)€(k) + b(k)up(k),

clk)y 1
(45)

where A e RN xRN, b e RN, N=n+m.

The error model Eq. (45) is used in the development of the pre-
dictive feedback control. In order to obtain the optimal control
algorithm, we define a criterion function that penalizes the error
and control action on a finite prediction horizon h € N:

h
J(up) = ZET(k +i1k)QE(K + ilk) + Rud(k +i — 1]k), (46)

i=1

where we have introduced &(k +i|k) = €,(k +i|k) — €(k +i|k) as the dif-
ference between the reference error € (k +ilk) and the predicted
error €(k+ilk) for all the ie {1, 2, ..., h} time-steps ahead of the
current time-step k. In Eq. (46), the Q e RN x RN and R € R, and xT
Qx>0 for every x € RN, and R> 0. The development of the control
law by minimization of the cost function Eq. (46) has previously
been shown in [53]. Here, we give a summary of the approach that
is rewritten for the SISO systems.

Using the model Eq. (45) we can make a prediction of the error
€(k+ilk) as a function of the current error €(k) and the unknown

(2013), http://dx.doi.org/10.1016/j.as0c.2013.10.022
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I
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]-lll

Fig. 3. Schematic model of a helio-crane.

feedback inputs ug(k+i—1|k) fori=1, ..., h:

€(k +ilk) = A o(K)€(k) + Y Ay j(k)b(k +j — 11k)u(k +j — 1]k),
j=1
: (47)

where we have defined A;j(k)= A(k+i—1]k)... A(k+j+1]k)
A(k+jlk). 1t should be noted that A,-J-(k)= I for all the j>i,
where I is the unity matrix. All the predicted states can be
gathered in an augmented vector € (k+1) = [€T(k + 11k) €T (k +
2|k) ... €T(k+h|k)], and all the future inputs in another aug-
mented vector ﬁ{;(k) = [ug(klk) ug(k+11k) ... ug(k+h—1lk)].
Now, the following extended system can be written:

€(k + 1) = A(k)€(k) + B(k)up(k), (48)
where the matrix A(k) € R™N x RN is defined as:
—T
A (k)= [ AT o(k) A oK) Afo(k) ] (49)
and the matrix B(k) € R"N x R is defined as:
b(k|k) 0 0
Ay 1(k)b(klk) b(k+ 1]k) 0
B(k) = |
An1(k)b(kik) Ay ,(k)b(k + 11k) bk + h — 1]k)
(50)

The cost function Eq. (46) can be rewritten in a more compact
form:

_ =T —— _ —_
J(ug) =& (k+1)Q&k+1)+ uE(k)RuB(k)A (51)
where we have introduced E(k +1)=¢€(k+1)—€k+1) as
the difference between the reference error EZ(k +1)=[€l(k+
11k) €f(k+2lk) ... €I(k+ hjk)]and the predicted error€ (k+1)
on the prediction horizon h. The weight matrices are given as
Q= oplus?le andR = oplus?le, and are both required to be posi-
tive semi-definite. The operator oplus;(-) denotes the direct matrix
sum.

The reference error is usually defined as an exponentially
decreasing function in the form of a state-space model: €,(k + ilk) =
A€(k) forie{1, 2, ..., h}. The model of the reference error on the

entire prediction horizon h is then €(k + 1) = A;(k)e(k), where a
new augmented matrix has been introduced:

T
(alw) |
To obtain the optimum control law, we need to find the mini-
mum of the objective function Eq. (51):

0J(up)

8"3

AL (k) = [Af(k) (A2(k))" (52)

(53)

—-26'Q (A~ A)€+2 (B'QB+R) I =0,

From the Eq. (53) the optimum control inputs are obtained:

-1
g0 (k) = (B (QB(K) +R) B (0Q (Ar(k) ~ AC0)) €(k),  (54)
Since the term in the last parentheses in Eq. (53) is positive semi-
definite, the obtained control input Eq. (54) is at the minimum of
the objective function Eq. (51), and therefore really the optimum
control input. According to the receding horizon strategy, at the
time step k only the up op.(kIk) =[1 O ... OJup op.(k)is added to
the feedforward input signal ug(k), and, in spirit of the predictive
control, during the next time step the whole procedure is repeated
again.

The control algorithm can be tuned with several different
parameters. The weight matrix Q and scalar R determine how
strictly should the predicted error follow the desired reference
error and how energy rich input signal is allowed, respectively. The
controller can also be tuned by selecting the error reference model
A; and the length of the prediction horizon h. These parameters
define the desired response dynamics and power consumption.

The presented control algorithm takes the system dynamics
into account inherently, in terms of the given fuzzy model. Since
the model of the system is obtained by identification of evolving
fuzzy model, the control approach is considered to be self-tuned.
The other tunable parameters presented in the paragraph above
determine the desired goals of the control algorithm, and are rela-
tively easy to tune. When the system goes through the input-output
space, these additional parameters do not need to be changed and
still the behaviour of the closed-loop system should stay the same
regardless of the operating point. This means that even when we are
dealing with non-linear systems, the closed-loop response should
be invariant to the operating point, provided a good enough model
of the plant is available.

The stability study of fuzzy systems is a difficult task. Even if
the fuzzy model has locally asymptotically stable subsystems, the
system can be still globally unstable [66]. The presented control
algorithm can achieve stable closed-loop response only on a certain

(2013), http://dx.doi.org/10.1016/j.as0c.2013.10.022
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class of non-linear SISO systems. The approach was designed to be
used on non-linear SISO systems with simple dynamics. The sys-
tem can be inherently unstable, but it must not have non-minimum
phase, or else some additional measures must be taken to achieve
stable behaviour. In a case of non-minimum phase system, the
fuzzy model of the system used in the feedforward loop must be
converted to appropriate minimum-phase system, otherwise the
closed-loop system becomes unstable. This is only a necessary con-
dition for closed loop stability and appropriate system behaviour.
Although, the stability of the closed loop could be checked with the
method of linear matrix inequalities (LMI) as in [67], this is not a
simple task, since a complex set of equations has to solved. Fur-
thermore, if the set of conditions for stability cannot be solved, the
system could still be stable, since the approach of LMI only gives
sufficient conditions for stability.

5. Helio-crane

The system that was chosen for the evaluation of the fuzzy-
control algorithm is composed of a rigid metal rod on a pivot that
can swing in a single vertical plane like a pendulum (Fig. 3). The
swing of one end of the rod is physically restricted to a vertical
half-plane, so the ends of the rod can freely move up and down. At
the end of one end of the swinging rod a motor with a lightweight
plastic propeller is placed perpendicular to the rod, so the rod can
be raised or lowered by changing the propeller’s thrust F;;. When
the motor is not turned on, the end of the rod with the motor is
at the bottom position. The motor can only rotate in one direction,
so the thrust always points in the same direction with respect to
the motor. However, applying some thrust to the motor can only
raise the rod, and the rod is lowered passively by gravitational force.
To the main rod some additional weights are attached that influ-
ence the behaviour of the system. The interaction with the system
is made through an additional electronic circuit. The speed of the
motor (system input) is voltage controlled in the range from 0V to
10V. The inclination of the rod (system output) is measured with
a resistive sensor for measuring the angle that returns the voltage,
also in range from OV to 10V. Since the system is composed of a
motor with a propeller, like the one in a helicopter, mounted on a
swinging rod, which can lift a weight like a crane, the system name
was coined helio-crane.

The system can be mathematically modelled by writing down
the basic physics equation for rotating objects:

Jo=T(e)-fo, (55)

where ¢ is the inclination of the rod, T is the sum of all torques
on the system, J is the moment of inertia and f is the damping fac-
tor. The moment of inertia J can be determined from the physical
dimensions of the helio-crane, applying some basic knowledge for
the calculation of the partial moments of inertia. According to Fig. 3,
the moment of inertia J is:
1 12
J= Pd(gll("% —riry +13)+ 12(§2 +13)) + Ml + myy 12, + mypl2,
(56)
and the torque Tis:
. 2 g2
T = Fnlm +g5m(<ﬂ)(ﬂd(72 - 51)+mullu1 — Mpln )+ (57)
+p4bag sin(@ + V1) + myagliz sin(e + ¥2),

where Iy = 1/ % + r%, tanyq = 2% andtan vy, = %.The vari-
ables rq, 13, Iy, I, Ab, 11, L, Im Tepresent the lengths as denoted
in Fig. 3; mpy, my; and my, are the masses of the motor and the
two weights, respectively; g is the gravitational acceleration; and

Table 1
Helio-crane (a) model parameters (see Fig. 3), (b) input and (c) output characteristic
function data.

Symbol Value Units
g 9.81 mR*Z
Pd 1.13 kgm 1
mp 0.13 kg
My 0.145 kg
myy 0.02 kg
n 0.34 m
T 0.2 m
Ly 0.165 m
L2 0.2402 m
Im 0.38 m
11 0.54 m
L 0.128 m
Al 0.0051 m
b 0.0269 m2
vy 0.3097 rad
Vo 0.5872 rad
f 0.15 1<g}\n2 s1
] 0.0483 kg)\n2
ulVv] fu IN]
0.0 0.0000
4.6 0.0000
4.7 0.1558
5.0 0.2727
5.5 0.4286
6.0 0.5844
7.0 0.8182
7.5 0.9351
8.0 1.0130
8.5 1.0909
10.0 1.0909
% Sy VI
14° 6.00
90° 3.52
177° 0.83

pg is the linear mass density of the rods. The damping factor f can
be heuristically determined and is defined in Table 1(a), where all
the other model parameters are also gathered. The output char-
acteristic function y=f,(¢) is approximately linear (Table 1(c)),
but the input characteristic function Fp, = f,,(u) is highly non-linear
(Table 1(b)). We can conclude that the helio-crane is a SISO non-
linear system with second-order dynamics, as Eq. (55) suggests.

The model describing the system, Eq. (55), can be linearised
around some operating point (OP). We would like to obtain a linear
mapping for different operating points between the input actuator
voltage u and the output sensor voltage y. The system Eq. (55) can
be rewritten into a non-linear state-space form

x(t) = F(x(t), u(t)),  y(t) = H(x(t), u(t)), (58)

where x=[x1 X, |T denotes the internal states, which we choose to
be x1 =¢ and x; = ¢. The linearised state-space model is obtained
by Taylor expansion of Eq. (58), where all the terms higher than the
first order are omitted:

0 1 0

Ak(t) = AX(t) + Au(e),
l;lfcos(x])bzsin(x]) —jj: o [T'”% o (59)

A = | A

y(t) {ax] 0} o x(t),
where we have introduced two new variables b=
2_ 2
2(Pa( 25 + Lg cos(Y1)) + Myt lyr — Minlm + Muzlz cos(y))  and

by =g(pglya sin(¥r1) +gmyalyz sin(yr2)).

(2013), http://dx.doi.org/10.1016/j.as0c.2013.10.022
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Fig. 4. Simulation. Distribution of the clusters over the system output.

Note that our approach does not require mathematical mod-
elling of the system, since the model required for the controller is
obtained by identification of the evolving fuzzy model. The derived
analytical model will be used for validation of the presented iden-
tification algorithm.

6. Experimental results

The presented self-tuning of the 2 DOF fuzzy model predic-
tive control (2 DOF FMPC) algorithm was experimentally tested
on the helio-crane system introduced in Section 5. In this section,
we first present the validation of the fuzzy model obtained with
evolving fuzzy modelling. Next, we evaluate the performance of
the presented control algorithm and show the comparison of the
algorithm against another advanced control approach. At the end,
experimental results obtained from the real system are presented.

6.1. Simulation

First, we validated the identification of the evolving fuzzy model
with simulation of the model Eq. (55). For the identification of the
evolving fuzzy model a second-order NARX model was chosen: n=2
and m = 1. We selected the clustering variable to be the output of the
system y (helio-crane inclination). The parameters for the identifi-
cation were set to the recommended values presented in Section 3.
We drove the helio-crane in open-loop up and down through all
the achievable inclinations of the rod. The measured signals were
used in the on-line identification of the system. After some time,
when the number of clusters in the evolving fuzzy model settled (at
eleven clusters), the fuzzy model was frozen. The final distribution
of the clusters over the output space is shown in Fig. 4. To evalu-
ate the performance of the identification, a comparison between
Bode diagrams at all the operating points of the identified fuzzy
model and the linearised model Eq. (59) of the helio-crane was
made (Fig. 5).

Once the model of the system was obtained, the controller could
be switched on. We selected the reference to be a stairs-line signal
with the length of each step equal to 10s and the height of each
step equal to 0.5V, from 5V to 1.5V and back to 5 V. In this way the
helio-crane goes through the whole range of possible inclinations.
Note that due to the negative characteristic of the sensor output,
a lower sensor voltage means a higher helio-crane inclination (see
Table 1(c)).

The controller parameters were set to the following values: the
prediction horizon h =5, the reference error-model matrix A, =0.65
I, the states weight Q =diag([10 1 1]7) and the input weight R=0.1,
where I is an identity matrix and diag(-) is a diagonal matrix. The
simulation results of the reference tracking are presented in Fig. 6.
During the simulation time the degree of fulfillment of each cluster
changed with time as it is shown in Fig. 7.

The performance of the presented control approach was com-
pared to a fuzzy predictive functional control (FPFC). A short

Magnitude / dB

-4
Output /V 1 10 Frequency / Hz

Phase /°

Output / V 1 10*

Frequency / Hz

Fig.5. Simulation. Comparison between the Bode diagrams of the system (coloured)
and the identified fuzzy model (white) for different operating points.

summary of the FPFC for a second-order system is given below. The
model of a second-order system Gn(z) = % is rewrit-
m m.

ten into a parallel form G (2) = Gip1(2) + Gz (2), where prediction of
each of the model for the future time k+h, h € N is as follows:

Kkm1(1 —al )

ym (k-4 h) = @y ym () + =3 — (), (60)
kma(1 —al )

Yok + ) = hyma (k) + =3 — 2 u(k), (61)

where kp1 = amlbinamZ and kg = am;f'gmz. The predicted output

of the model is a sum of both predicted submodel outputs:
VYm(k+h)=ymi(k+h)+ym2(k+h). The fuzzy predictive functional
control is given as:
u() = —a’ﬁe(k)+ym1(k)£1 —af,‘ﬂ)+yhmz(k)(1 —aly) rm 62)
kmi(1=a® ) kpp(1-al ) bm"
T-am T-amp

where e(k) = w(k) — y(k) — ym(k) + yma(k) and a; is the parameter
of the reference signal:

Velk + h) = alyr(k) + (1 — aywik), (63)

where w(k) is the reference signal. The y,4(k) is the delayed output
of the model. The parameters of the model a1, a2, bm and 1y, are

(2013), http://dx.doi.org/10.1016/j.as0c.2013.10.022
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Fig.6. Simulation of 2 DOFFMPC: (a) reference signal tracking and (b) control action.

obtained from the fuzzy model Eq. (1). For more information on
the derivation of the control law the reader is referred to the works
[68,69,34].

The design parameters of the fuzzy predictive functional con-
trol were selected to be a-=0.7 and h=5. The reference tracking
performance of the FPFC controller is shown in Fig. 8 and can be
compared to the reference tracking of the proposed 2 DOF fuzzy
control shown in Fig. 6. For better comparison of the results, the
error is plotted in all the consecutive 10s time windows into the
same (relative) time frame (Fig. 9).

To evaluate the performance of the control algorithm several
criteria functions were defined [70]. Besides the error function
e(k)=r(k)—y(k), we used two more integral (cumulative sum) crite-
ria functions: the Sum of the Absolute Error

SAE = T32|e(k)|/\ (64)
k

and the Sum of the Squared Error

SSE=Tsy _e*(k), (65)
k

[N Cluster 1
I Cluster 2
I Cluster 3
I Cluster 4
[ Cluster 5
[N Cluster 6
[ Cluster 7
[ Cluster 8
[ Cluster 9
[ Cluster 10
[N Cluster 11

Fulfillment

20 40 60 80 100 120 140
Time [s]

Fig. 7. Simulation. Time progress of the degrees of fulfillment for all the clusters.

Fig. 8. Simulation of FPFC: (a) reference signal tracking and (b) control action.

To evaluate the control effort we have taken a closer look at the
change of the input action Au(k)=u(k)—u(k—1) and introduced
two more integral criteria functions: the Sum of the Absolute Input
differences

SAdU = Z|Au(k)| (66)

k

and the Sum of the Squared Input differences

SSdU = ZAuz(k)A (67)
k

The results were also compared by means of the settling time t; 5 (a
minimum time range after which the output stays within a prede-
fined error region o around the reference signal) and the maximum
overshoot OS. If there were similar step reference changes at dif-
ferent operating points, the maximum settling time and overshoot
from among all the responses at different operating points was
selected as the criteria for the comparison, denoted as max t; , and
max OS, respectively. In Table 2 the comparison of the reference
tracking quality between the FPFC and 2 DOF FMPC in terms of
different criteria is shown.

We also evaluated the input disturbance rejection performance
of the presented controller and FPFC controller at three different
operating points: 5V, 3.5V and 2 V. The results are shown in Fig. 10

Table 2

Simulation. Comparison of reference-tracking performance to different criteria.
Criterion Units 2 DOF FMPC FPFC
SAE Vg 3.1360 4.0305
SSE o 0.8798 1.2032
SAdU \Y 86 93
SSdu V2 137 123
max £s,0.025v S 1.50 2.80
max ts.05v S 1.20 2.20
max 0S \Y 0.0060 0.0932

(2013), http://dx.doi.org/10.1016/j.as0c.2013.10.022
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Fig. 9. Simulation. Error signals around all the reference steps plotted in the same time frame for (a) FPFC and (b) 2 DOF FMPC.

, and in Table 3 the performance of the disturbance rejection is
evaluated in terms of several criteria.

6.2. Real system

We tested the tracking of the same reference signal as in the
simulation environment also on the real system. We used only the
presented control algorithm. The results from the real system are
shown in figures from Fig. 11 to Fig. 15. Fig. 11 shows the distri-
bution of the clusters over the output space, Fig. 12 shows Bode
diagrams of the identified fuzzy model, in Fig. 13 and Fig. 14 the
results of the reference tracking are shown, and in Fig. 15 the
switching between the clusters during the reference tracking is
visualized. The performance of the control algorithm on the real
system in terms of different criteria is shown in Table 4.

7. Discussion

The fuzzy model of the system, required in the control algorithm,
was obtained with evolving fuzzy modelling. The comparison of
Bode diagrams of the identified fuzzy model and linearised ana-
lytical model in Fig. 5 confirms that the presented identification
method is capable of modelling the system behaviour for the whole
range of operating points.

The proposed control law was designed based on the obtained
fuzzy model of the system. The reference tracking results in Fig. 9(b)
reveal that the closed-loop step response of the proposed approach
is invariant to the operating point (inclination of the helio-crane),
which was one of the control goals. This means, that the controller
is capable of determining appropriate control signals even though
the system dynamic behaviour is non-linear. The presented control
law takes non-linearity of the system into account implicitly (in

Table 3 Table 4

Simulation. Comparison of input disturbance rejection to different criteria. Real system. Performance of reference-tracking to different criteria.
Criterion Units 2 DOF FMPC FPFC Criterion Units 2 DOF FMPC
SAE V; 0.1858 0.3541 SAE Vg 6.2333
SSE Vis 0.0112 0.0293 SSE Vi 1.2018
SAdU \% 9.48 12.56 SAdU \% 315
SSdU V2 5.38 5.12 SSdU V2 403
max ts0,005v s 1.60 4.00 max ts0,05v s 5.50
maxtso01v S 1.30 3.20 maxtso1v S 1.60
max 0S \% 0.1034 0.1497 max 0S \% 0.0654

(2013), http://dx.doi.org/10.1016/j.as0c.2013.10.022
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Fig. 11. Real experiment. Distribution of the clusters over the system output.

form of a fuzzy model) and adapts the control action accordingly.
The comparison of the presented control law with the fuzzy pre-
dictive functional control (Fig. 8) reveals, that the proposed control
law gives a better performance in terms of almost all considered
criteria (Table 2). The output in the case of the FPFC is a little oscil-
latory and has little longer settling time (Fig. 9(a)) than in the case
of 2 DOF fuzzy model predictive control, where the output error
is also monotonically decreasing (Fig. 9(b)). The proposed control
algorithm also give satisfactory results when dealing with input
input disturbance rejection (Fig. 10 and Table 3). This comparison
confirms the applicability of the proposed approach.

Magnitude / dB

Output / V 1

200

150 4.

-
(=)
(=)

Phase /°

50

Output /V 1

Since the presented control algorithm is self-tuned based
on the evolving fuzzy model, the mathematical modelling of
the system is not necessary. This simplified the implemen-
tation of the control algorithm not only in the simulation
environment but also on the real system. The main con-
trol goals were also achieved on the real system (Fig. 11 to
Fig. 15). However, the reference tracking (Fig. 14) is not so
precise as in simulation environment. The reason for that is
mainly due to some stiction in the bearing at the pivot point.
Nevertheless, the obtained results on the real system are satisfac-
tory.

Frequency / Hz

10 Frequency / Hz

Fig. 12. Real experiment. Bode diagrams of the identified fuzzy model for different operating points.
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Fig. 13. Real experiment; (a) reference signal tracking and (b) control action.
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Fig. 14. Real experiment. Error signals around all the reference steps plotted in the same time frame.
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Fig. 15. Real experiment. Time progress of the degrees of fulfillment for all the
clusters.

8. Conclusion

In this paper a self-tuning of 2 DOF control based on evolving
fuzzy model was presented. We showed the way fuzzy model can
be used in the design of the feed-forward and feedback loop of the
2 DOF control algorithm. To achieve self-tuning of the control algo-
rithm, we presented the identification algorithm of evolving fuzzy
model which employs mechanisms for adding, merging, splitting
and removing of clusters. The results obtained in the simulation
environment and real experiments confirm the applicability of
the approach. With the presented 2 DOF structure of the con-
trol algorithm we were able to achieve good reference tracking
that reacts fast to changes in the reference signal and it is able to
eliminate the reference-tracking error, even in the presence of dis-
turbances. We showed that the presented control algorithm can

(2013), http://dx.doi.org/10.1016/j.as0c.2013.10.022
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achieve set-point invariant reference tracking on a non-linear SISO
system.

The experimental results have proved the applicability of the
presented approach and give solid ground for future enhance-
ments of the presented control algorithm. The control algorithm
was developed for a class of SISO non-linear systems, but in the
future the approach might be extended to some other classes of
systems, e.g. to at least some classes of MIMO systems.
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